首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
化学   15篇
晶体学   1篇
物理学   46篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   4篇
  2008年   7篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
1.
The relation between the density of etch pits revealed in GaN by etching in a KOH/NaOH eutectic and the density of dislocations determined by transmission electron microscopy (TEM) is studied along with the relation between the density of dislocations and the density of dark spot defects observed in GaN by microcathodoluminescence (MCL) and electron-beam-induced current (EBIC). It is demonstrated that selective etching is a reliable rapid method for the determination of the type and density of dislocations in GaN in the range 106–108 cm?2, while MCL and EBIC can be used for the rapid nondestructive determination of the density of dislocations in the range 106–108 cm?2. It is also found that some deep electron and hole traps are related to dislocations.  相似文献   
2.
Microwave discharges of HBr/H2/Ar and H/H2/Ar with additional do biasing of the sample were used to etch InP, GaAs, and AlGaAs at temperatures between 50–250°C. The etch rates increase by factors of 3–50 and 5–9, respectively, for HBr-and HI-based discharges over this temperature range, but display non-Arrhenius behavior. The etched surfaces became very rough above 100°C for InP with either discharge chemistry due to preferential loss of P, while GaAs and AlGaAs are more tolerant of the elevated temperature etching. The near-surface electrical properties of InP are severely degraded by etch temperatures above 100°C, while extensive hydrogen in-diffusion occurs in GaAs and AlGaAs under these conditions, leading to dopant passivation which can be reversed by annealing at 400°C.  相似文献   
3.
Vinyl iodide (C2H3I) microwave discharges with additions of H2 and Ar are found to provide faster etch rates than conventional CH4/H2/Ar discharges for InP, InGaAs, GaAs, and AlGaAs. This is a result of the relatively high volatilities of indium, gallium, and aluminum iodide species. The etched features are smooth and anisotropic over a wide range of do self-biases (–150 to –350 V), process pressures (1–20mTorr), and microwave powers (150–500 W). The polymer that forms on the mask during the plasma exposure can be readily removed in O2 discharges. Electron spectroscopy for chemical analysis (ESCA) showed that the etched surfaces are slightly deficient in the group V elements under most conditions, but changes to the optical properties of the semiconductors are minimal. No defects are visible by transmission electron microscopy (TEM) in GaAs or InP samples etched at dc biases –250 V.  相似文献   
4.
5.
6.
A systematic study has been performed of the dry etching characteristics of GaAs, Al0.3Ga0.7As, and GaSb in chlorine-based electron cyclotron resonance (ECR) discharges. The gas mixtures investigated were CCl2F2/O2, CHCl2F/O2, and PCl3. The etching rates of all three materials increase rapidly with applied RF power, while the addition of the microwave power at moderate levels (150 W) increases the etch rates by 20–80%. In the microwave discharges, the etch rates decrease with increasing pressure, but at 1 m Torr it is possible to obtain usable rates for self-bias voltages 100 V. Of the Freon-based mixtures, CHCl2F provides the least degradation of optical (photoluminescence) and electrical (diode ideality factors and Schottky barrier heights) properties of GaAs as a result of dry etching. Smooth surface morphologies are obtained on all three materials provided the microwave power is limited to 200 W. Above this power, there is surface roughening evident with all of the gas mixtures investigated.  相似文献   
7.
Electron cyclotron resonance (ECR) plasma etching with additional rf-biasing produces etch rates 2,500 A/min for InGaP and AlInP in CH4/H2/Ar. These rates are an order of magnitude or much higher than for reactive ion etching conditions (RIE) carried out in the same reactor. N2 addition to CH4/H2/Ar can enhance the InGaP etch rates at low flow rates, while at higher concentrations it provides an etch-stop reaction. The InGaP and AlInP etched under ECR conditions have somewhat rougher morphologies and different stoichiometries up to 200 Å from the sur face relative to the RIE samples.  相似文献   
8.
The reactive ion etching of GaAs, InP, InGaAs, and InAlAs in CF3Br/Ar discharges was investigated as a function of both plasma power density (0.56-1.3 W - cm–2) and total pressure (10-40 mTorr) The etch rate of GaAs in 19CF3Br:1Ar discharges at 10 m Torr increases linearly with power density, from 600 Å min–1 at 0.56 W · cm–2, to 1550 Å · min at 1.3 W · cm–2. The in-based materials show linear increases in etch rates only for power densities above – 1.0 W · cm–2. These etch rates are comparable to those obtained with CCI2F2:O2 mixtures under the same conditions. Smooth surface morphologies and vertical sidewalls are obtained over a wide range of plasma parameters. Reductions in the near-surface carrier concentration in n-type GaAs are evident for etching with power densities of >0.8 W cm–2, due to the introduction of deep level trapping centers. At 1.3 W· cm–2, the Schottky barrier height of TiPtAu contacts on GaAs is reduced from 0.74 to 0.53 eV as a result of this damage, and the photoluminescent intensity from the material is degraded. Alter RIE, we detect the presence of both F and Br on the surface of all of the semiconductors. This contamination is worse than with CCl2F2-based mixtures. High-power etching with CF3Br/Ar together with Al-containing electrodes can lead to the presence of a substantial layer of aluminum oxide on the samples if the moisture content in the reactor is appreciable.  相似文献   
9.
Ion implantation of Mn ions into hole-doped GaP has been used to induce ferromagnetic behavior above room temperature for optimized Mn concentrations near 3 at. %. The magnetism is suppressed when the Mn dose is increased or decreased away from the 3 at. % value, or when n-type GaP substrates are used. At low temperatures the saturated moment is on the order of 1 Bohr magneton, and the spin wave stiffness inferred from the Bloch-law T(3/2) dependence of the magnetization provides an estimate T(c)=385 K of the Curie temperature that exceeds the experimental value, T(c)=270 K. The presence of ferromagnetic clusters and hysteresis to temperatures of at least 330 K is attributed to disorder and proximity to a metal-insulating transition.  相似文献   
10.
Ohmic contacts to p-type CuCrO2 using Ni/Au/CrB2/Ti/Au contact metallurgy are reported. The samples were annealed in the 200–700 °C range for 60 s in flowing oxygen ambient. A minimum specific contact resistance of 2 × 10−5 Ω cm2 was obtained after annealing at 400 °C. Further increase in the annealing temperature (>400 °C) resulted in the degradation of contact resistance. Auger Electron Spectroscopy (AES) depth profiling showed that out-diffusion of Ti to the surface of the contact stacks was evident by 400 °C, followed by Cr at higher temperature. The CrB2 diffusion barrier decreases the specific contact resistance by almost two orders of magnitude relative to Ni/Au alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号