首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Biomass valorization to building block chemicals in food and pharmaceutical industries has tremendously gained attention. To produce monophenolic compounds from palm empty fruit bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as a promotor. Subsequently, EFB-derived lignin was subjected to an oxidative depolymerization using Cu(II) and Fe(III) mixed metal oxides catalyst supported on γ-Al2O3 or SiO2 as the catalyst in the presence of hydrogen peroxide. The highest percentage of total phenolic compounds of 63.87 wt% was obtained from microwave-induced oxidative degradation of K2CO3 extracted lignin catalyzed by Cu-Fe/SiO2 catalyst. Main products from the aforementioned condition included 27.29 wt% of 2,4-di-tert-butylphenol, 19.21 wt% of syringol, 9.36 wt% of acetosyringone, 3.69 wt% of acetovanillone, 2.16 wt% of syringaldehyde, and 2.16 wt% of vanillin. Although the total phenolic compound from Cu-Fe/Al2O3 catalyst was lower (49.52 wt%) compared with that from Cu-Fe/SiO2 catalyst (63.87 wt%), Cu-Fe/Al2O3 catalyst provided the greater selectivity of main two value-added products, syringol and acetosyrigone, at 54.64% and 23.65%, respectively (78.29% total selectivity of two products) from the NaOH extracted lignin. The findings suggested a promising method for syringol and acetosyringone production from the oxidative heterogeneous lignin depolymerization under low power intensity microwave heating within a short reaction time of 30 min.  相似文献   
2.
The present study aimed to develop a nicotine microemulsion (NCT-ME) and incorporate it into a fast-dissolving film. The NCT-ME was prepared by mixing the specified proportions of nicotine (NCT), surfactant, co-solvent, and water. The NCT-ME was measured by its average droplet size, size distribution, zeta potential, and morphology. NCT-ME fast-dissolving films were prepared by the solvent casting technique. The films were characterized by morphology, weight, thickness, disintegration time, and mechanical strength properties and the determined NCT loading efficiency and in vitro drug release. The results showed that almost all NCT-MEs presented droplet sizes of less than 100 nm with a spherical form, narrow size distribution, and zeta potentials of −10.6 to −73.7 mV. There was no difference in weight and thickness between all NCT-ME films, but significant changes in the disintegration times were noticed in NCT40-Smix[PEG-40H(2:1)]10 film. The mechanical properties of films varied with changes in type of surfactant. About 80% of the drug release was observed to be between 3 and 30 min. The drug release kinetics were fitted with the Higuchi matrix model. The NCT40-Smix[P-80(1:1)]10 film showed the highest dissolution rate. It was concluded that the developed ME-loaded fast-dissolving film can increase drug release to a greater extent than the films without ME.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号