首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
化学   4篇
数学   8篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The main purpose of this article is to describe a numerical scheme for solving two-dimensional linear Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on radial basis functions (RBFs) constructed on a set of disordered data. The proposed method does not require any background mesh or cell structures, so it is meshless and consequently independent of the geometry of domain. This approach reduces the solution of the two-dimensional integral equation to the solution of a linear system of algebraic equations. The error analysis of the method is provided. The proposed scheme is also extended to linear mixed Volterra–Fredholm integral equations. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the new technique.  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - This article presents the effects of a circular disk obstacle with different angle ratios on heat transfer and pressure drop under a turbulent flow...  相似文献   
3.
The present work proposes a numerical method to obtain an approximate solution of non-linear weakly singular Fredholm integral equations. The discrete Galerkin method in addition to thin-plate splines established on scattered points is utilized to estimate the solution of these integral equations. The thin-plate splines can be regarded as a type of free shape parameter radial basis functions which create an efficient and stable technique to approximate a function. The discrete Galerkin method for the approximate solution of integral equations results from the numerical integration of all integrals in the method. We utilize a special accurate quadrature formula via the non-uniform composite Gauss-Legendre integration rule and employ it to compute the singular integrals appeared in the scheme. Since the approach does not need any background meshes, it can be identified as a meshless method. Error analysis is also given for the method. Illustrative examples are shown clearly the reliability and efficiency of the new scheme and confirm the theoretical error estimates.  相似文献   
4.
Rafati  Amir Abbas  Afraz  Ahmadreza  Hajian  Ali  Assari  Parnaz 《Mikrochimica acta》2014,181(15):1999-2008

We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.

The CPE was modified with multiwalled carbon nanotubes and an ionic liquid. After optimization the electrode was further modified with palladium nanoparticles. The resulting electrode gives three sharp and well separated oxidation peaks for ascorbic acid, dopamine and uric acid

  相似文献   
5.
This work describes an accurate and effective method for numerically solving a class of nonlinear fractional differential equations.To start the method,we equivalently convert these types of differential equations to nonlinear fractional Volterra integral equations of the second kind by integrating from both sides of them.Afterward,the solution of the mentioned Volterra integral equations can be estimated using the collocation method based on locally supported Gaussian functions.The local Gaussian-collocation scheme estimates the unknown function utilizing a small set of data instead of all points in the solution domain,so the proposed method uses much less computer memory and volume computing in comparison with global cases.We apply the composite non-uniform Gauss-Legendre quadrature formula to estimate singular-fractional integrals in the method.Because of the fact that the proposed scheme requires no cell structures on the domain,it is a meshless method.Furthermore,we obtain the error analysis of the proposed method and demon-strate that the convergence rate of the approach is arbitrarily high.Illustrative examples clearly show the reliability and efficiency of the new technique and confirm the theoretical error estimates.  相似文献   
6.
Journal of Thermal Analysis and Calorimetry - Heat transfer of MgO-EG nanofluid flowing in a double tube heat exchanger with an inner tube containing a partial porous material under laminar and...  相似文献   
7.
8.

In this paper, a local version of the topological pressure of dynamical systems is presented. It is a function defined on the product space which does not depend on any measure. It is shown that, for any invariant measure, integration of the introduced function with respect to its corresponding diagonal measure results in the metric pressure of the dynamical system.

  相似文献   
9.
We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. Figure
The CPE was modified with multiwalled carbon nanotubes and an ionic liquid. After optimization the electrode was further modified with palladium nanoparticles. The resulting electrode gives three sharp and well separated oxidation peaks for ascorbic acid, dopamine and uric acid  相似文献   
10.
This paper investigates a numerical method for solving two-dimensional nonlinear Fredholm integral equations of the second kind on non-rectangular domains. The scheme utilizes the shape functions of the moving least squares (MLS) approximation constructed on scattered points as a basis in the discrete collocation method. The MLS methodology is an effective technique for approximating unknown functions which involves a locally weighted least square polynomial fitting. The proposed method is meshless, since it does not need any background mesh or cell structures and so it is independent of the geometry of the domain. The scheme reduces the solution of two-dimensional nonlinear integral equations to the solution of nonlinear systems of algebraic equations. The error analysis of the proposed method is provided. The efficiency and accuracy of the new technique are illustrated by several numerical examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号