首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   27篇
物理学   4篇
  2013年   1篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1992年   2篇
  1868年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Even though lead is a well-known toxicant widely scattered throughout the world since antiquity, its chemistry is poorly documented at the molecular level. Here we investigate the hydration of the Pb(2+) ion by means of first-principles molecular dynamics (Car-Parrinello molecular dynamics, CPMD). We found that the hydrated cation is heptacoordinated in a dynamically holodirected arrangement roughly corresponding to a fluxional distorted pentagonal bipyramid. The time-averaged Pb-O bond length is especially large and amounts to 2.70 A with an associated root-mean-square deviation of 0.26 A. This results from a dynamic exchange between short (<2.6 A), intermediate (2.6-3.0 A) and long (>3.0 A) Pb-O bonds. The latter very long Pb-O distance implies that the determination of the coordination number n(c) from experimental work may not necessarily yield values directly comparable to the theoretical value of n(c)=7, since not all experimental techniques would recognize such a long distance as a bond to the metal cation. Pronounced disorders are evidenced in the second shell, characteristic of a chaotropic cation, and exchanges between the first and second shells cannot be excluded on a timescale of a few tens of picoseconds.  相似文献   
2.
The theoretical study of (LiMe)(n) aggregates using Car-Parrinello molecular dynamics was undertaken. With respect to a quantum chemical static treatment, this approach furnishes supplementary information about the structural parameters. Equilibrium structures are indeed stable to ca. 300 K, provided the methyl groups in the aggregates are considered to rotate essentially freely. The Li-C distance depends on the coordination number of Li and not so much on the degree of aggregation. Finally, above 650 K, the cubic LiCH(3) tetramer (which is energetically favored) undergoes an entropy-driven rearrangement to a planar structure.  相似文献   
3.
In this contribution, we study several monocarbonyl-metal complexes in order to unravel the contribution of relativistic effects to the metal-ligand bond length and complexation energy. Using scalar density functional theory (DFT) constrained space orbital variation (CSOV) energy decomposition analysis supplemented by all-electron four-component DFT computations, we describe the dependency of relativistic effects on the orbitals involved in the complexation for the Au(+) isoelectronic series, namely, the fully occupied 5d orbitals and the empty 6s orbitals. We retrieve the well-known sensitivity of gold toward relativity. For platinum and gold, the four-component results illustrate the simultaneous relativistic expansion of the 5d orbitals and the contraction of the 6s orbitals. The consequences of such modifications are evidenced by CSOV computations, which show the importance of both donation and backdonation within such complexes. This peculiar synergy fades away with mercury and thallium for which coordination becomes driven by the accepting 6s orbitals only, which makes the corresponding complexes less sensitive toward the relativistic effects.  相似文献   
4.
5.
The (1)J and (3)J(C-Li), (1)J(N-Li), and (2)J(Li-Li) NMR coupling constants have been calculated for various homogeneous and heterogeneous aggregates of methyllithium and lithium dimethylamide at the HF and MP2 levels of calculation. Ethereal solvation has also been taken into account either through a continuum model or through the explicit introduction of Me(2)O molecules. The results obtained are in good general agreement with the experimental data available for methyllithium itself or model alkyllithiums and supports the empirical rule proposed by Bauer, Winchester, and Schleyer to evaluate (1)J(C-Li) provided that calculations include solvent and/or aggregation effects.  相似文献   
6.
In Nature, the family of copper monooxygenases comprised of peptidylglycine α‐hydroxylating monooxygenase (PHM), dopamine β‐monooxygenase (DβM), and tyramine β‐monooxygenase (TβM) is known to perform dioxygen‐dependent hydroxylation of aliphatic C? H bonds by using two uncoupled metal sites. In spite of many investigations, including biochemical, chemical, and computational, details of the C? H bond oxygenation mechanism remain elusive. Herein we report an investigation of the mechanism of hydroxylation by PHM by using hybrid quantum/classical potentials (i.e., QM/MM). Although previous investigations using hybrid QM/MM techniques were restricted to geometry optimizations, we have carried out ab initio molecular dynamics simulations in order to include the intrinsic flexibility of the active sites in the modeling protocol. The major finding of this study is an extremely fast rebound step after the initial hydrogen‐abstraction step promoted by the cupric–superoxide adduct. The hydrogen‐abstraction/rebound sequence leads to the formation of an alkyl hydroperoxide intermediate. Long‐range electron transfer from the remote copper site subsequently triggers its reduction to the hydroxylated substrate. We finally show two reactivity consequences inherent in the new mechanistic proposal, the investigation of which would provide a means to check its validity by experimental means.  相似文献   
7.
In this contribution, we focus to the currently unknown [Pb(CO)(n)](2+) model series (n=1 to 10), a set of compounds which allows us to investigate in-depth the holo- and hemidirectional character that lead complexes can exhibit. By means of DFT computations performed using either relativistic four-component formalisms coupled to all-electron basis sets for [Pb(CO)](2+), [Pb(OC)](2+) and [Pb(CO)(2)](2+), or scalar relativistic pseudopotentials for higher n values, the structure and the energetics of these species are investigated. The results are complemented by Constrained Space Orbital Variations (CSOV) and Electron Localization Function (ELF) comprehensive analyses in order to get better insights into the poorly documented chemical fundamentals of the Pb(2+) cation. Whereas the discrimination between holo- and hemidirected structures is usually done according to the geometry, we here provide a quantitative indicator grounded on (V(Pb)), the mean charge density of the valence monosynaptic V(Pb) ELFic basin associated to the metal cation. Free-enthalpy relying discussions show, moreover, that those gas-phase complexes having n=7, 8 or 9 may be experimentally instable and should dissociate into [Pb(CO)(6)](2+) and a number of CO ligands. According to second-order differences in energy, it is anticipated that the n=3 or 6 structures should be the most probable structures in the gas phase. Gathering all data from the present theoretical study allows us to propose some concepts that the versatile structural chemistry of Pb(2+) complexes could rely on.  相似文献   
8.
A new generation of PNP compounds bearing different diarylphosphine groups were prepared and used as ligands in palladium-catalysed Suzuki cross-coupling reactions. Rates of oxidative addition of iodobenzene to (PNP)Pd[0] complexes were measured using UV spectroscopy. Synergistic effects between the N- and P- substituents were identified and correlated in redox and catalytic chemistry.  相似文献   
9.
Intermolecular interaction energy decompositions using the Constrained Space Orbital Variation (CSOV) method are carried out at the Hartree-Fock level on the one hand and using DFT with usual GGA functionals on the other for a number of model complexes to analyze the role of electron correlation in the intermolecular stabilization energy. In addition to the overall stabilization, the results provide information on the variation, with respect to the computational level, of the different contributions to the interaction energy. The complexes studied are the water linear dimer, the N-methylformamide dimer, the nucleic acid base pairs, the benzene-methane and benzene-N2 van der Waals complexes, [Cu+ -(ImH)3]2, where "ImH" stands for the Imidazole ligand, and ImH-Zn++. The variation of the frozen core energy (the sum of the intermolecular electrostatic energy and the Pauli repulsion energy) calculated from the unperturbed orbitals of the interacting entities indicates that the intramolecular correlation contributions can be stabilizing as well as destabilizing, and that general trends can be derived from the results obtained using usual density functionals. The most important difference between the values obtained from HF and DFT computations concerns the charge transfer contribution, which, in most cases, undergoes the largest increase. The physical meaning of these results is discussed. The present work gives reference calculations that might be used to parametrize new correlated molecular mechanics potentials.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号