首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   10篇
物理学   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2012年   1篇
  2001年   3篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.  相似文献   
2.
3.
The use of chemical modification of cellulosic fibre is applied in order to increase the hydrophobicity, hence improving the compatibility between the fibre and matrix bonding. In this study, the effect of propionic anhydride modification of kenaf fibre was investigated to determine the role of bionanocarbon from oil palm shell agricultural wastes in the improvement of the functional properties of bionanocomposites. The vinyl esters reinforced with unmodified and propionic anhydride modified kenaf fibres bio nanocomposites were prepared using 0, 1, 3, 5 wt% of bio-nanocarbon. Characterisation of the fabricated bionanocomposite was carried out using FESEM, TEM, FT-IR and TGA to investigate the morphological analysis, surface properties, functional and thermal analyses, respectively. Mechanical performance of bionanocomposites was evaluated according to standard methods. The chemical modification of cellulosic fibre with the incorporation of bionanocarbon in the matrix exhibited high enhancement of the tensile, flexural, and impact strengths, for approximately 63.91%, 49.61% and 54.82%, respectively. The morphological, structural and functional analyses revealed that better compatibility of the modified fibre–matrix interaction was achieved at 3% bionanocarbon loading, which indicated improved properties of the bionanocomposite. The nanocomposites exhibited high degradation temperature which signified good thermal stability properties. The improved properties of the bionanocomposite were attributed to the effect of the surface modification and bionanocarbon enhancement of the fibre–matrix networks.  相似文献   
4.
Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.  相似文献   
5.
D614G spike glycoprotein (sgp) mutation in rapidly spreading severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) is associated with enhanced fitness and higher transmissibility in new cases of COVID-19 but the underlying mechanism is unknown. Here, using atomistic simulation, a plausible mechanism has been delineated. In G614 sgp but not wild type, increased D(G)614-T859 Cα-distance within 65 ns is interpreted as S1/S2 protomer dissociation. Overall, ACE2-binding, post-fusion core, open-state and sub-optimal antibody-binding conformations were preferentially sampled by the G614 mutant, but not wild type. Furthermore, in the wild type, only one of the three sgp chains has optimal communication route between residue 614 and the receptor-binding domain (RBD); whereas, two of the three chains communicated directly in G614 mutant. These data provide evidence that D614G sgp mutant is more available for receptor binding, cellular invasion and reduced antibody interaction; thus, providing framework for enhanced fitness and higher transmissibility in D614G SARS-COV-2 mutant.  相似文献   
6.
7.
The adsorption of Cd and Pb ions from palm oil mill effluent on a mesoporous-activated cow bone composite powder has been investigated. Adsorbent was developed from cow bones, coconut shells and zeolite. The composite examined in the present work has a BET surface area of 248.398 m2/g. The optimisation of the removal efficiency of the heavy metals was investigated using central composite design and analysed using response surface methodology. The analysis of variance of the quadratic model signified that the model suitably predicted the uptake of the heavy metal ions at a 95% confidence level. The optimal operating condition was recorded at pH 4, 50 rpm, within 24 h and 1 mm of particle size and 12.5 gL?1 of adsorbent dosage. The characteristics of the composite were investigated using the Fourier transform irradiation. The morphology and chemical composition of composite was examined using the scanning electron microscopy equipped with energy dispersive x-ray. Characterisation study was conducted before and after the adsorption process. The results obtained illustrated that the removal of cadmium and lead from POME was influenced by the functional groups available on the surface of the composite. The carboxyl and hydroxyl groups are mainly responsible for the removal of cadmium and lead through chelating process. The point of zero charge (pHpzc) revealed that the adsorbent contained acidic sites with negatively charge surface which influenced the adsorption process. The experimental data of the heavy metals of Cd and Pb investigated were fitted to the Langmuir and Freundlich models. The result revealed that the adsorption equilibrium data fitted better to the Langmuir model for the adsorption Cd and to the Freundlich model for the adsorption of Pb.  相似文献   
8.
Supercapacitors may be able to store more energy while maintaining fast charging times; however, they need low-cost and sophisticated electrode materials. Developing innovative and effective carbon-based electrode materials from naturally occurring chemical components is thus critical for supercapacitor development. In this context, biopolymer-derived porous carbon electrode materials for energy storage applications have gained considerable momentum due to their wide accessibility, high porosity, cost-effectiveness, low weight, biodegradability, and environmental friendliness. Moreover, the carbon structures derived from biopolymeric materials possess unique compositional, morphological, and electrochemical properties. This review aims to emphasize (i) the comprehensive concepts of biopolymers and supercapacitors to approach smart carbon-based materials for supercapacitors, (ii) synthesis strategies for biopolymer derived nanostructured carbons, (iii) recent advancements in biopolymer derived nanostructured carbons for supercapacitors, and (iv) challenges and future prospects from the viewpoint of green chemistry-based energy storage. This study is likely to be useful to the scientific community interested in the design of low-cost, efficient, and green electrode materials for supercapacitors as well as various types of electrocatalysis for energy production.  相似文献   
9.
10.
Solid lipid nanoparticles (SLNs) have the potential to enhance the systemic availability of an active pharmaceutical ingredient (API) or reduce its toxicity through uptake of the SLNs from the gastrointestinal tract or controlled release of the API, respectively. In both aspects, the responses of the lipid matrix to external challenges is crucial. Here, we evaluate the effects of lyophilization on key responses of 1:1 beeswax–theobroma oil matrix SLNs using three model drugs: amphotericin B (AMB), paracetamol (PAR), and sulfasalazine (SSZ). Fresh SLNs were stable with sizes ranging between 206.5–236.9 nm. Lyophilization and storage for 24 months (4–8 °C) caused a 1.6- and 1.5-fold increase in size, respectively, in all three SLNs. Zeta potential was >60 mV in fresh, stored, and lyophilized SLNs, indicating good colloidal stability. Drug release was not significantly affected by lyophilization up to 8 h. Drug release percentages at end time were 11.8 ± 0.4, 65.9 ± 0.04, and 31.4 ± 1.95% from fresh AMB-SLNs, PAR-SLNs, and SSZ-SLNs, respectively, and 11.4 ± 0.4, 76.04 ± 0.21, and 31.6 ± 0.33% from lyophilized SLNs, respectively. Thus, rate of release is dependent on API solubility (AMB < SSZ < PAR). Drug release from each matrix followed the Higuchi model and was not affected by lyophilization. The above SLNs show potential for use in delivering hydrophilic and lipophilic drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号