首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   9篇
数学   1篇
  2012年   1篇
  2011年   1篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
When a time harmonic electromagnetic wave impinges on a slaba certain portion of the wave creates heat within the slab throughdipolar and ohmic heating. The electrical and thermal propertiesof the material dictate the dynamical nature of the heatingprocess, as well as the steady-state temperature profile. Thematerial considered here is a slab of fluid. We consider thecase where the fluid is bounded by thin rigid layers of transparentmaterial. The steady-state heating profile governs the typesof convective motions that can occur and also affects the stabilitycharacteristics of temperature, pressure and velocity perturbationsintroduced in the slab. The main objective here is to examinesuch stability characteristics, initially in the linear regime.Both rigid-rigid and rigid-free configurations are considered.  相似文献   
2.
To probe for possible relationships between retinal crystallins and retinal degenerations, protein expression was compared in normal Sprague-Dawley rats, treated or not with intense light, Royal College of Surgeons (RCS) rats and transgenic rats expressing rhodopsin mutations. Rats were reared in dim cyclic light for 21-75 days. Photoreceptor cell DNA levels were determined at various ages to assess the rates of visual cell loss. 1D- and 2D-gel electrophoresis was used to profile retinal protein expression. Crystallins were identified by western analysis and by tandem mass spectrometry. In normal rat retinas, alpha, beta and gamma crystallins were present, although alphaA- and gamma-crystallins exhibited some increase with age. As measured by DNA levels, the rate of genetically induced photoreceptor cell loss was greater in rats with faster degenerating retinas (RCS, S334-ter Line 4, P23H Line 3) than in rats with slower degenerating retinas (S334-ter Line 9, P23H Line 2). In genetic models of retinal degeneration increased levels of immunoreactivity for all crystallins, especially alphaA-insert, correlated with the different rates of photoreceptor loss. In the light induced degeneration model alphaA-insert was unchanged, truncated alphaB-crystallin levels were increased and gamma-crystallins were greatly reduced. In the RCS rat retina 16 different crystallins were identified. Our data suggests that an increase in crystallin expression occurs during various retinal degenerations and that the increases may be related to the severity, type and onset of retinal degeneration.  相似文献   
3.
Transgenic rats with the P23H mutation in rhodopsin exhibit increased susceptibility to light damage, compared with normal animals. It is known that light-induced retinal damage requires repetitive bleaching of rhodopsin and that photoreceptor cell loss is by apoptosis; however, the underlying molecular mechanism(s) leading to photoreceptor cell death are still unknown. Photoproducts, such as all-trans retinal or other retinoid metabolites, released by the extensive bleaching of rhodopsin could lead to activation of degenerative processes, especially in animals genetically predisposed to retinal degenerations. Using wild-type and transgenic rats carrying the P23H opsin mutation, we evaluated the effects of acute intense visible light on retinoid content, type and distribution in ocular tissues. Rats were exposed to green light (480-590 nm) for 0, 5, 10, 30 and 120 min. Following light treatment, rats were sacrificed and neural retinas were dissected free of the retinal pigment epithelium. Retinoids were extracted from retinal tissues and then subjected to HPLC and mass spectral analysis. We found that the light exposure affected relative levels of retinoids in the neural retina and retinal pigment epithelium of wild-type and P23H rat eyes similarly. In the P23H rat retina but not the wild-type rat retina, we found a retinoic acid-like compound with an absorbance maximum of 357 nm and a mass of 304 daltons. Production of this retinoic acid-like compound in transgenic rats is influenced by the age of the animals and the duration of light exposure. It is possible that this unique retinoid may be involved in the process of light-induced retinal degeneration.  相似文献   
4.
The damaging effects of intense light on the rat retina are known to vary depending on the time of day of exposure. The purpose of this study was to determine if rhodopsin phosphorylation patterns, a measure of the activity of the pigment, varied in a similar manner. After 10 min in strong light (1400 lux), all six threonine and serine sites in the rat rhodopsin C-terminus were phosphorylated, with mono- to tetraphosphorylation being substantially more prominent than penta- to hexaphosphorylation. The level and multiplicity of rhodopsin phosphorylations were reduced both with the duration of light exposure and the duration of subsequent darkness. Although showing vast differences in susceptibility to light damage, rats exposed at 5 P.M. or 1 A.M. showed similar rhodopsin phosphorylation levels and patterns. These data indicate that a process controlled by circadian rhythm other than rhodopsin phosphorylation is involved either in damaging or mediating the damage evoked by intense light exposure.  相似文献   
5.
This study investigated a possible circadian rhythm of light damage susceptibility in photoreceptors of both cyclic light-reared and dark-reared rats. A single exposure to intense green light was administered, beginning either in the early light period, the late light period or the dark period. In some animals exposed in the dark period, the synthetic antioxidant dimethylthiourea was administered before or after the onset of intense light exposure. Retinas were examined either immediately after exposure or after 2 weeks of recovery in darkness. Rod outer segment length and outer nuclear layer thickness measurements were used to assess light damage, along with qualitative analysis of swelling and disruption of the outer retinal layers. In all animals, retinal light damage was the most severe when intense light exposure began during the dark period. However, this severe damage was significantly reduced by pretreatment with the antioxidant. In a separate set of unexposed animals, fluctuations in plasma adrenocorticotropic hormone (ACTH) and corticosterone concentrations followed the same time course, regardless of the light regime during rearing. Our data support the notion of a circadian rhythm of light damage susceptibility that peaks in the dark period and yet can be modulated by the exogenous administration of an antioxidant.  相似文献   
6.
Mineral supplements are often included in multivitamin preparations because of their beneficial effects on metabolism. In this study, we used an animal model of light‐induced retinal degeneration to test for photoreceptor cell protection by the essential trace element zinc. Rats were treated with various doses of zinc oxide and then exposed to intense visible light for as long as 8 h. Zinc treatment effectively prevented retinal light damage as determined by rhodopsin and retinal DNA recovery, histology and electrophoretic analysis of DNA damage and oxidized retinal proteins. Zinc oxide was particularly effective when given before light exposure and at doses two‐ to four‐fold higher than recommended by the age‐related eye disease study group. Treated rats exhibited higher serum and retinal pigment epithelial zinc levels and an altered retinal gene expression profile. Using an Ingenuity database, 512 genes with known functional annotations were found to be responsive to zinc supplementation, with 45% of these falling into a network related to cellular growth, proliferation, cell cycle and death. Although these data suggest an integrated and extensive regulatory response, zinc induced changes in gene expression also appear to enhance antioxidative capacity in retina and reduce oxidative damage arising from intense light exposure.  相似文献   
7.
Crystallins in the retina may serve a chaperone-like protective function. In this study we measured mRNA levels for alpha-, beta- and gamma-crystallins in rat retinas following treatment with potentially damaging levels of light. We also determined crystallin protein patterns in photoreceptor cell rod outer segments (ROSs) isolated from rats exposed to intense light. Weanling albino rats were maintained in a dim cyclic light environment or in darkness for 40days. At P60 animals were treated with intense visible light, for as long as 8h, beginning at various times of the day or night. Retinas were excised immediately after light treatment and used for quantitative RT-PCR, or to prepare ROSs for western analysis. Some eyes were frozen in OCT for crystallin immunohistochemistry. Intense light exposure led to increases in mRNA expression for all retinal crystallins and to changes in ROS crystallin immunoreactivity. These light-induced changes were found to depend on the time of day that exposure started, duration of light treatment and previous light rearing history. We suggest that crystallin synthesis in retina exhibits a dependence on both light stress and circadian rhythm and that within photoreceptor cells crystallins appear to migrate in a light-independent, circadian fashion.  相似文献   
8.
The damaging effects of visible light on the mammalian retina can be detected as functional, morphological or biochemical changes in the photoreceptor cells. Although previous studies have implicated short-lived reactive oxygen species in these processes, the termination of light exposure does not prevent continuing damage. To investigate the degenerative processes persisting during darkness following light treatment, rats were exposed to 24 h of intense visible light and the accumulation of DNA damage to restriction fragments containing opsin, insulin 1 or interleukin-6 genes was measured as single-strand breaks (ssb) on alkaline agarose gels. With longer dark treatments all three DNA fragments showed increasing DNA damage. Treatment of rats with the synthetic antioxidant dimethylthiourea prior to light exposure reduced the initial development of alkali-sensitive strand breaks and allowed significant repair of all three DNA fragments. The time course of double-strand DNA breaks was also examined in specific genes and repetitive DNA. Nucleosomal DNA laddering was evident immediately following the 24 h light treatment and increased during the subsequent dark period. The increase in the intensity of the DNA ladder pattern suggests a continuation of enzymatically mediated apoptotic processes triggered during light exposure. The protective effects of antioxidant suggests that the light-induced DNA degradative process includes both early oxidative reactions and enzymatic processes that continue after cessation of light exposure.  相似文献   
9.
In the rat, photoreceptor cell death from exposure to intense visible light can be prevented by prior treatment with antioxidants. In this study we subjected albino rats raised in dim cyclic light and rats made more susceptible to light damage by rearing in darkness to exposures of green light that led to similar losses of photoreceptor cells. Rhodopsin and photoreceptor DNA, indicators of the number of surviving photoreceptor cells, were determined at various times over a period of 14 days after light exposure. Fragmentation of DNA was determined over a similar time course by neutral and alkaline agarose gel electrophoresis. Apoptosis in retinal DNA was measured by quantitating the appearance of 180 base pair (bp) nucleosomal fragments. Oxidation of DNA was measured by electrochemical detection of the nucleoside 8-hydroxydeoxyguanosine (8-OHdG) after separation by high-performance chromatography. For albino rats reared in dim cyclic light, 24 h of intense light exposure resulted in the loss of 50% rhodopsin and photoreceptor cell DNA. In dark-reared rats, the losses were 40%, respectively, after only 3 h of intense light treatment. In both cases pretreatment with the antioxidant dimethylthiourea (DMTU) prevented rhodopsin and photoreceptor cell DNA loss. The kinetics of the light-induced apoptosis depended markedly on the rearing environment of the rats. The DNA ladders appeared within 12 h of the onset of intense light in the rats reared in dim cyclic light. In these rats the 180 bp fragment was at two-thirds of its maximum intensity immediately after 24 h of light exposure and reached the maximum 12 h later. Dimethylthiourea partially inhibited ladder formation in rats reared in dim cyclic light and delayed the time of appearance of the 180 bp maximum by 6 h. By contrast, in rats reared in darkness the 180 bp fragment was undetected immediately after 3 h of light exposure and reached its maximum 2 days later. Pretreatment with DMTU completely eliminated DNA ladders in these rats. Alkaline gel electrophoresis revealed a pattern of single-strand DNA breaks, with relatively high molecular weight fragments, 6 h after light exposure of dark-reared rats. Single-strand DNA breaks in cyclic light rats corresponded with the onset of apoptotic ladders, but peak values preceded by 12 h the peak of DNA ladder formation. The quantity of 8-OHdG in retinal DNA remained close to control values in all samples with the exception of a peak of twice the control value 18 h after light exposure in the dark-reared rats and a value 60% higher 16 days after exposure in cyclic light animals. Dimethylthiourea had no effect on the amount of oxidized purine in any of the samples. The differences between dark-reared rats and rats reared in dim cyclic light in the kinetics of DNA fragmentation and in their response to treatment with DMTU is consistent with previous observations of fundamental differences in retinal cell physiology in these animals. In dim light-reared rats, the pathway to apoptosis may be qualitatively different from the pathway to net photoreceptor loss in rats reared in darkness. The lack of effect of DMTU on 8-OHdG formation suggests that the oxidation of DNA bases is not a causal factor in light-mediated photoreceptor cell death.  相似文献   
10.
Damage to rat retinal DNA induced in vivo by visible light   总被引:2,自引:0,他引:2  
Intense visible light can damage retinal photoreceptor cells by photochemical or thermal processes, leading to cell death. The precise mechanism of light-induced damage is unknown; however, oxidative stress is thought to be involved, based on the protective effect of antioxidants on the light-exposed retina. To explore the in vivo effects of light on retinal DNA, rats were exposed to intense visible light for up to 24 h and the time courses of single-strand breaks in restriction fragments containing the opsin, insulin 1 and interleukin-6 genes were measured. All three gene fragments displayed increasing single-strand modifications with increasing light exposure. Treatment with the antioxidant dimethylthiourea prior to light exposure delayed the development of net damage. The time course of double-strand DNA damage was also examined in specific genes and in repetitive DNA. The appearance of discrete 140-200 base-pair DNA fragments after 20 h of light exposure implicated a nonrandom, possibly enzymatic damaging mechanism. The generation of nucleosome core-sized DNA fragments, in conjunction with single-strand breaks, suggests two phases of light-induced retinal damage, with random attack on DNA by activated oxygen species preceding enzymatic degradation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号