首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   545篇
  免费   15篇
化学   371篇
晶体学   2篇
力学   24篇
数学   85篇
物理学   78篇
  2023年   3篇
  2022年   7篇
  2021年   25篇
  2020年   17篇
  2019年   16篇
  2018年   12篇
  2017年   10篇
  2016年   12篇
  2015年   18篇
  2014年   15篇
  2013年   20篇
  2012年   32篇
  2011年   28篇
  2010年   20篇
  2009年   30篇
  2008年   32篇
  2007年   38篇
  2006年   31篇
  2005年   25篇
  2004年   21篇
  2003年   10篇
  2002年   15篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1987年   2篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   7篇
  1973年   3篇
  1972年   3篇
  1971年   4篇
  1968年   2篇
排序方式: 共有560条查询结果,搜索用时 125 毫秒
1.
2.
Catalytic hydrogenation of o-nitrophenylbenz[a], benz[c], dibenz[a,h] and dibenz[a,g]acridinones using Pd/C as catalyst, at 60 psi of pressure, gave the hiterto unknown benzoquinoacridine N-oxides and benzo-pyranonaphthyridine N-oxides. The structure of all products was corroborated by ir, 1H- and 13C-nmr and mass spectra data.  相似文献   
3.
Summary This paper uses Hamiltonian structures to study the problem of the limit of three-dimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a three-dimensional elastic body converges, in a sense made precise, to that for a shell model described by a one-director Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure. The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic one-director model for shells. Another way of stating the convergence result is that there is an almost-Poisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model. We apply our theory in the specific case of a 3D Saint Venant-Kirchhoff material andderive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhoff-like shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a one-director Kirchhoff elastic rod model, which reduces to the well-known Euler elastica if one adds an additional single constraint that the director lines up with the Frenet frame. This paper is dedicated to the memory of Juan C. Simo This paper was solicited by the editors to be part of a volume dedicated to the memory of Juan Simo.  相似文献   
4.
Reaction of HgR2 with OsHCl(CS)(PPh3)3 yields red, five-coordinate, OsRCl-(CS)(PPh3)2 (R = p-tolyl). From this have been derived the compounds OsRX(CS)(PPh3)2 with X = Br, I, S2CNEt2, O2CMe, O2CCF3. These compounds add an additional ligand, MeCN, CO or CNR to form colourless, six coordinate arylthiocarbonyl complexes, which undergo migratory-insertion reactions to form red, dihapto-thioacyl complexes. The crystal structure of a representative example, Os(η2-CSR)(η1-O2CCF3)(CO)PPh3)2 has been determined. The red equant crystals are orthorhombic, space group P212121, a 11.584(1), b 19.184(2), c 18.90(1) Å, V 4199 Å3, Z  4. The structure was solved by conventional heavy-atom methods and refined by full-matrix least-squares employing anisotropic thermal parameters for all non-hydrogen atoms except the carbon atoms of the triphenylphosphines. The final R factor is 0.057 for 2868 observed reflections.The coordination geometry in the monomeric complex is that of an octahedron distorted by the constraints of the ligands. The triphenyl phosphine ligands are mutually trans; the equatorial plane contains carbonyl, monohapto-trifluoroacetate, and dihapto-thioacyl ligands. Bond distances and angles are OsP 2.405, 2.407(4) Å; POsP 173.9(1)°; OsCO 1.83(2) Å; Os-O (trifluoroacetate) 2.206(11) Å; OsC (thioacyl) 1.91(2); OsS 2.513(6); CS 1.72 Å. The CS bond length implies a reduction in bond order from 2.0 to approx. 1.5 upon coordination to the metal.The η2-thioacyl ligand in Os(η2-CSR)Cl(CNR)(PPh3)2 is methylated with methyl triflate and further reaction with LiCl produces the thiocarbene complex OsCl2(C[SMe]R)(CNR)(PPh3)2.  相似文献   
5.
The association of a C3v-symmetrical calix[6]tris-amine with different concave tris-carboxylic acids of various degrees of flexibility has been explored by 1H NMR spectroscopy. In all cases, self-assembled structures directed by the selective inclusion of a neutral guest molecule were obtained, the more preorganized being stable in protic solvents. With a rigid C3-symmetrical cap, chiral guest recognition in the calixarene cavity resulted. A large tris-acidic partner gave a unique molecular ditopic receptor that is able to simultaneously accommodate two neutral molecules in two distinct hydrophobic cavities with different binding processes.  相似文献   
6.
The host-guest properties of calix[6]tren 1 have been evaluated. The receptor is based on a calix[6]arene that is covalently capped at the narrow rim by a tren unit. As a result, the system presents a concave hydrophobic cavity with, at its bottom, a grid-like nitrogenous core. Despite its well-defined cavity and opening to the outside at the large rim, 1 did not behave as a good receptor for neutral molecules in chloroform. However, it exhibited efficient endo-complexation of ammonium guests. By contrast, the per-protonated host, 1.4H(+), behaved as a remarkable receptor for small organic molecules. The complexation is driven by a strong charge-dipole interaction and hydrogen bonds between the polar guest and the tetracationic cap of the calixarene. Finally, coordination of Zn(2+) to the tren core led to the asymmetrization of calixarene cavity and to the strong but selective endo-binding of neutral ligands. This study emphasizes the efficiency of a receptor presenting a concave hydrophobic cavity that is polarized at its bottom. The resulting combination of charge-dipole, hydrogen bonding, CH-pi, and van der Waals interactions highly stabilizes the supramolecular architectures. Also, importantly, the tren cap allows the tuning of the polarization, offering either a basic (1), a highly charged and acidic (1.4H(+)), or a coordination (1.Zn(2+)) site. As a result, the system proved to be highly versatile, tunable, and interconvertible in solution by simple addition of protons, bases, or metal ions.  相似文献   
7.
The coordination chemistry of Zn in an N(3)ArOH environment has been explored. The ligands are based on calix[6]arenes that present two imidazole arms and an amino phenol moiety at the narrow rim. Three different types of complexes have been characterized. One is dicationic with Zn(2+) coordinated to the three nitrogen atoms and to the oxygen of the phenol group of the calix[6]ligand. This complex is very sensitive to exogenous coordinating molecules and exists as a 5-coordinate species due to the endo-complexation of a guest. The second species is a monocationic complex for which the phenol group has been deprotonated. The resulting N(3)ArOZn complex can also bind a guest ligand albeit with a lower affinity than the dicationic complex. The third species is neutral. It can be obtained upon reaction with a base to yield a hydroxo complex or with an anion such as a chloride that coordinates the metal center from the outside of the calixarene cavity. The simultaneous binding of two anionic donors decreases the Zn Lewis acidity, allowing an impressive conformational reorganization of the system. One imidazole arm is released by the metal center. The other one undergoes self-inclusion into the pi-basic calixarene cavity because the low affinity of the metal center for neutral ligand does not allow the endo-coordination of an exogenous guest. Hence, the calix[6]N(3)ArOH-based Zn complexes act as an acid-base switch for guest binding. Several aspects of this system appear reminiscent of Zn-peptidases of the astacin and serralisin families.  相似文献   
8.
The elaboration of closed-packed monolayers of Au55(PPh3)12Cl6 clusters on oxidized and non-oxidized GaAs surfaces is reported. The first part of this work describes the use of silanethiol modified GaAs oxide surfaces to trap 18 nm gold colloids and Au55(PPh3)12Cl6 clusters. The surfaces characterized by AFM measurements present high-quality coverage on a quite long range for both metallic species. The second part is devoted to the elaboration of Au55(PPh3)12Cl6 cluster monolayers on non-oxidized p-type GaAs substrates, functionalized with dithiol molecules. AFM measurements demonstrate the presence of closed-packed two-dimensional arrangements of Au55 clusters.  相似文献   
9.
Two calixarene-based model systems (a and b) for monocopper enzymes are compared. Both present a tris(pyridine) coordination site for Cu that mimics the imidazole-rich neutral binding site in enzymes. Upon reaction with 1 equiv of copper(I), the tridentate ligands gave rise to ill-defined unsymmetrical complexes. However, in the presence of an organonitrile RCN (R = Me, Et, Ph), tetrahedral species were obtained, with the nitrilo ligand included in the calixarene hydrophobic cone. System b presents a larger cavity than system a, with a wider opening thanks to the removal of three tBu groups from the calixarene structure. As a result, the recognition pattern for MeCN vs PhCN is inverted, and the relative affinity constants differ by 3 orders of magnitude. The mechanism of the acetonitrile exchange at the cuprous centers was studied by (1)H NMR spectroscopy. Thermodynamic and kinetic data show that it follows a dissociative pathway in both cases. The main differences between systems a and b stem from the presence of a door that entraps the guest in case a. In system b indeed, the removal of three calixarene tBu groups led to a 100-fold acceleration of the MeCN exchange rate. Hence, these supramolecular systems provide a rare and interesting model for the hydrophobic substrate channel giving access to a metalloenzyme active site.  相似文献   
10.
To determine the influence of various culture conditions, transformed cells of Escherichia coli expressing recombinant green fluorescent protein (GFPuv) were grown in nine cultures with four variable conditions (storage of inoculated broth at 4°C prior to incubation, agitation speed, isopropyl-β-d-thiogalactopyranoside [IPTG] concentration, and induction time). The pelleted cells were resuspended in extraction buffer and subjected to the three-phase partitioning (TPP) extraction method. To determine the most appropriate purification resin, protein extracts were eluted through one of four types of HiTrap hydrophobic interaction chromatography (HIC) columns prepacked with methyl, butyl, octyl, or phenyl resins and analyzed further on a 12% sodium dodecylsulfatepolyacrylamidegel. With Coomassie staining, a single band between 27 (standard GFPuv) and 29 kDa (molecular weight standard) was visualized for every HIC column sample. TPP extraction with HIC elution provided about 90% of the GFPuv recovered and eight-fold GFPuv enrichment related to the specific mass. Rotary speed and IPTG concentration showed, respectively, greater negative and positive influences on GFPuv expression at the beginning of the logarithmic phase for the set culture conditions (37°C, 24-h incubation).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号