首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
化学   29篇
数学   4篇
物理学   16篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   1篇
排序方式: 共有49条查询结果,搜索用时 46 毫秒
1.
2.
Enhanced fluidity (EF) liquid mixtures are advantageous as mobile phases for the separation of moderate to polar compounds in liquid chromatography (reversed-phase, normal, size exclusion, size exclusion, and chiral separations). The low viscosities and high diffusivities of EF mixtures allow highly efficient separations to be achieved in a small amount of time. The best use of enhanced-fluidity liquids is only possible when their physicochemical properties are known. Herein, the techniques used to measure the physicochemical properties (phase diagram, diffusivity, solvent strength and pH) of EF liquids are described. For each technique, the experiment design and the care necessary to insure the quality of the collected data are described. Finally, the impact of the measured physicochemical properties on the chromatography is also highlighted.  相似文献   
3.
Summary Linear velocity in capillary SFC is commonly controlled by restricting capillaries. In this paper, a model is described that quantitatively predicts the linear velocity of a supercritical fluid in SFC using tapered or ceramic frittype restrictors. In this model, the flow from the restricting capillary is assumed to be an isentropic expansion. The variation of the linear velocity as a function of pressure, temperature and cross-sectional area of the restricting aperture was predicted by this model. This predictive capability is important to the use of gradient programming in capillary SFC. Finally, the ideal variable restrictor for gradient programming was found to be one that could reversibly increase or decrease the linear velocity independent of the pressure, temperature, and/or density conditions used to create the gradient.  相似文献   
4.
The development of a new method for the determination of Cr(III) hydrolytic polymerisation products using capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) is described. The results indicate that CE-ICP-MS can be used to separate and detect monomeric and polymeric Cr(III) species. The various species migrate through the capillary at a rate proportional to their equilibrium distribution, which is dictated by the solution pH, metal ion concentration and ageing period. In general, the data suggest that the relative mobility follows the order trimer>dimer>monomer. The experimentally determined speciation shows a good qualitative agreement with that described in the literature. Independent confirmation of the presence of polymeric Cr(III) species was performed by ionspray mass spectrometry.  相似文献   
5.
6.
In this work, the use of patterned proteins and peptides for the deposition of gold nanoparticles on several substrates with different surface chemistries is presented. The patterned biomolecule on the surface acts as a catalyst to precipitate gold nanoparticles from a precursor solution of HAuCl4 onto the substrate. The peptide patterning on the surfaces was accomplished by physical adsorption or covalent attachment. It was shown that by using covalent attachment with a linker molecule, the influence of the surface properties from the different substrates on the biomolecule adsorption and subsequent nanoparticle deposition could be avoided. By adjusting the reaction conditions such as pH or HAuCl4 concentration, the sizes and morphologies of deposited gold nanoparticle agglomerates could be controlled. Two biomolecules were used for this experiment, 3XFLAG peptide and bovine serum albumin (BSA). A micro-transfer molding technique was used to pattern the peptides on the substrates, in which a pre-patterned poly(dimethylsiloxane) (PDMS) mold was used to deposit a lift-off pattern of polypropylmethacrylate (PPMA) on the various substrates. The proteins were either physically adsorbed or covalently attached to the substrates, and an aqueous HAuCl4 solution was applied on the substrates with the protein micropatterns, causing the precipitation of gold nanoparticles onto the patterns. SEM, AFM, and Electron Beam Induced Current (EBIC) were used for characterization.  相似文献   
7.
Using the approach of Rulla (1996 SIAM J. Numer. Anal. 33, 68-87)for analysing the time discretization error and assuming moreregularity on the initial data, we improve on the error boundderived by Barrett and Blowey (1996 IMA J. Numer. Anal. 16,257-287) for a fully practical piecewise linear finite elementapproximation with a backward Euler time discretization of amodel for phase separation of a multi-component alloy.  相似文献   
8.
The potential of enhanced‐fluidity liquid chromatography, a subcritical chromatography technique, in mixed‐mode hydrophilic interaction/strong cation‐exchange separations is explored, using amino acids as analytes. The enhanced‐fluidity liquid mobile phases were prepared by adding liquefied CO2 to methanol/water mixtures, which increases the diffusivity and decreases the viscosity of the mixture. The addition of CO2 to methanol/water mixtures resulted in increased retention of the more polar amino acids. The “optimized” chromatographic performance (achieving baseline resolution of all amino acids in the shortest amount of time) of these methanol/water/CO2 mixtures was compared to traditional acetonitrile/water and methanol/water liquid chromatography mobile phases. Methanol/water/CO2 mixtures offered higher efficiencies and resolution of the ten amino acids relative to the methanol/water mobile phase, and decreased the required isocratic separation time by a factor of two relative to the acetonitrile/water mobile phase. Large differences in selectivity were also observed between the enhanced‐fluidity and traditional liquid mobile phases. A retention mechanism study was completed, that revealed the enhanced‐fluidity mobile phase separation was governed by a mixed‐mode retention mechanism of hydrophilic interaction/strong cation‐exchange. On the other hand, separations with acetonitrile/water and methanol/water mobile phases were strongly governed by only one retention mechanism, either hydrophilic interaction or strong cation exchange, respectively.  相似文献   
9.
Polyhydroxyalkanoates are biodegradable polyesters produced by bacteria that can have a wide distribution in molecular weight, composition of monomers, and functionalities. This large distribution often leads to unpredictable physical properties making commercial applications challenging. To improve polymer homogeneity and obtain samples with a clear set of physical characteristics, poly-3-hydroxyvalerate-co-3-hydroxybutyrate copolymers were fractionated using gradient polymer elution chromatography (GPEC) as opposed to extensively used bulk fractionation. Separation was achieved using a reversed-phase column with chloroform and ethanol as the solvent and non-solvent, respectively. A separation was also conducted on a normal-phase column to compare elution patterns between columns of varied polarity. The fractions were analyzed using Size Exclusion Chromatography (SEC) and NMR to determine the percentage of 3-hydroxyvalerate in the copolymer as well as its molecular weight. It was found that as the percentage of "good" solvent was increased in the mobile phase, the polymers eluted with decreasing percentage of 3-hydroxyvalerate and increasing molecular weight which indicates the importance of precipitation/redissolution in the separation. The elution pattern of the polymer remained unchanged when using both a normal- and reversed-phase column which also illustrates the dominance of precipitation/redissolution in GPEC of polyhydroxyalkanoates. As such, GPEC is shown to be an excellent choice to provide polyhydroxyalkanoate samples with a narrower distribution in composition than the original bulk copolymer sample.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号