首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   11篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
An elaborated protocol is described which allows the efficient transformation of di-, tri-, and tetrapeptides into cyclopeptides with a minimum of protection and activation chemistry using the photoinduced electron transfer initiated decarboxylation of N-phthaloyl peptides resulting in C-C coupling between the initially formed carbon radicals.  相似文献   
2.
Butyl methoxy dibenzoylmethane (BMDM) and octocrylene (OC), common UV-filters in sunscreen products are often used in combination. Together they provide broad spectrum photoprotection from exposure to both UVA- and UVB-light. These UV-filters may, however, undergo photodegradation and generate photodegradants, resulting in a potential loss of photoprotection. It is thus a concern that the photostability testing as described by the ICH Guideline Q1B is not a requirement for sunscreen products in Australia, Europe or the USA. UV-filter photodegradants have in addition been shown to be toxic, highlighting the importance of their separation from the parent UV-filters. An HPLC method was developed and validated to quantitatively determine a combination of these UV-filters in the presence of their photodegradants. Reverse-phase chromatography was employed, using a C18 column and an isocratic mobile phase consisting of methanol/water/acetic acid (89/10/1 v/v). Validation according to the ICH guidelines for linearity, accuracy, precision, sensitivity, specificity and robustness was confirmed. The developed and validated method was then successfully applied to the determination of BMDM and OC in an aqueous cream base, typically used in sunscreens, after photostability testing, according to the ICH Guideline Q1B. In addition, the diketo-enol ratio of BMDM in methanol-d 4 was determined by NMR and the two major photodegradants were identified by FTMS and LC–MS.  相似文献   
3.
Hydrogen bond and potassium cation mediated preorientation were detected for phthalimido acetic acid and the corresponding acetate. Evidence for these phenomena came from X-ray structure analysis as well as cyclic voltammetric and IR spectroscopic measurements. These interactions rationalize the photoinduced electron transfer (PET) reactivity of the substrates in photodecarboxylation reactions.  相似文献   
4.
Six cyclic stilbene derivatives with hindered free rotation around the C(vinyl)–C(phenyl) single bond were synthesized by McMurry coupling. The torsion angles around the double and the single bond, and the CC bond length were obtained for many of the compounds from their solid-state structures. The photochemical isomerization was subsequently investigated for all derivatives under various conditions. The parent 1-(1-tetralinylidene)tetralin underwent efficient oxidative electrocyclization. The 2,2,2′,2′-tetramethylated analogue was resistant towards photooxidation, however, its cis-isomer thermally reisomerized to the more stable trans-isomer.  相似文献   
5.
A novel, multimicrocapillary flow reactor (MμCFR) was constructed and applied to a series of sensitized photoadditions involving 2(5H)-furanones. The reactor allowed for rapid and energy-, time-, and space-efficient sensitizer screening, process optimization, validation, scale-up, and library synthesis.  相似文献   
6.
The photophysical and photochemical properties of N-phthaloyl-methionine (1), S-methyl-N-phthaloyl-cysteine methyl ester (2) and N-phthaloyltranexamic acid (3) were studied by time-resolved UV/Vis spectroscopy, using laser pulses at 248 or 308 nm. The quantum yield of fluorescence is low (phi(f)< 10(-2)) for 1-3 in fluid and glassy media, whereas that of phosphorescence is large (0.3-0.5) in ethanol at - 196 degrees C. The triplet properties were examined in several solvents, at room temperature and below. The spectra and decay kinetics are similar, but the population of the pi(pi*) triplet state, as measured by T-T absorption, is much lower for 1 and 2 than for 3 or N-methyltrimellitimide (5') at ambient temperatures. The quantum yield (phi(delta)) of singlet molecular oxygen O2(1deltag) formation is substantial for 3 and 5' in several air- or oxygen-saturated solvents at room temperature, but small for 2 and 1. The quantum yield of decomposition is substantial (0.2-0.5) for 3 and small (<0.05) for 2 and 1. It is postulated that photoinduced charge separation in the spectroscopically undetectable 3n,pi* state may account for the cyclization products of 1 and 2. In aqueous solution, this also applies for 3, whereas in organic solvents cyclization involves mainly the lower lying 3pi,(pi*) state. Triplet acetone, acetophenone and xanthone are quenched by 1-3 in acetonitrile; the rate constant is close to the diffusion-controlled limit, but smaller for benzophenone. While the energy transfer from the triplet ketone occurs for 3, a major contribution of electron transfer to the N-phthalimide derivative is suggested for 1 and 2, where the radical anion of benzophenone or 4-carboxybenzophenone is observed in alkaline aqueous solution.  相似文献   
7.
This review summarizes recent advances in microflow photochemical technologies and transformations. The portfolio of reactions comprises homogeneous and heterogeneous types, among them photoadditions, photorearrangements, photoreductions, photodecarboxylations, photooxygenations and photochlorinations. While microflow photochemistry is most commonly employed as a micro-scale synthesis tool, scale-up and technical production processes have already been developed.  相似文献   
8.
The photoinduced oxidation of 1-naphthol to 1,4-naphthoquinone and of 5-hydroxy-1-naphthol to 5-hydroxy-1,4-naphthoquinone was studied by steady-state and time-resolved techniques. The direct photooxidation of naphthols in methanol or water takes place by reaction of the naphoxyl radical ((?)ONaph) with the superoxide ion radical (O(2)(?-)), the latter of which results from the reaction of the solvated electron with oxygen after photoionization. The sensitized oxidation takes place by energy transfer from the xanthene triplet state to oxygen. From the two oxygen atoms, which are consumed, one is incorporated into the naphthol molecule giving naphthoquinone and the second gives rise to water. The effects of eosin, erythrosin, and rose bengal in aqueous solution, pH, and the oxygen and naphthol concentrations were studied. The quantum yield of the photosensitized transformation was determined, which increases with the naphthol concentration and is largest at pH > 10. The quantum yield of oxygen uptake is similar. The pathway involving singlet molecular oxygen is suggested to operate for the three sensitizers. The alternative pathway via electron transfer from the naphthol to the xanthene triplet state and subsequent reaction of (?)ONaph with O(2)(?-), the latter of which is formed by scavenging of the xanthene radical anion by oxygen, does also contribute.  相似文献   
9.
Various photosensitizers were grafted by conventional peptide coupling methods to functionalized silica with several macroscopic shapes (powders, films) or embedded in highly transparent and microporous silica xerogel monoliths. Owing to the transparency and free‐standing shape of the monoliths, the transient species arising from irradiation of the PSs could be analyzed and were not strikingly different from those observed in solutions. The observed reactivity for either liquid–solid (α‐terpinene oxygenation vs dehydrogenation) or gas–solid (dimethylsulfide, DMS, solvent‐free oxidation) reactions was consistent with the properties of the excited states of the PSs under consideration. Immobilized anthraquinone‐derived materials preferentially react in both cases by electron transfer from the substrate to the triplet state of the sensitizer, in spite of an efficient singlet oxygen production. The recently developed 9,14‐dicyanobenzo[b]triphenylene‐3‐carboxylic acid, DBTP‐COOH, efficiently reacts via energy transfer to yield singlet oxygen from its triplet state. It was shown to perform better than 9,10‐dicyanoanthracene and rose bengal for DMS oxidation and α‐terpinene photooxygenation to ascaridole, respectively. Thus, by a proper choice of the organic immobilized photocatalyst, it is possible to develop efficient and reusable materials, activated under visible light, for various applications and to tune the reaction pathway, opening the way to green oxidation processes.  相似文献   
10.
The photochemistry of several phthalimido acetamides and phthaloyl dipeptide esters has been investigated. Their photocyclization ability strongly depended on the substitution pattern of the amide linker group. While secondary amide-derived starting materials were largely unreactive, the corresponding tertiary amide-linked derivatives furnished the desired cyclic peptide model compounds in acceptable to good yields (41–80%). The structurally related ester-linked model derivatives also remained unreactive upon irradiation. Preferential hydrogen-abstraction from the E-cis-substituent is suggested to explain the observed differences in cyclization ability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号