首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   7篇
数学   4篇
物理学   2篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  1993年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Size-correlated single-molecule fluorescence measurements on CdSe quantum dots functionalized with oligo(phenylene vinylene) (OPV) ligands exhibit modified fluorescence intermittency (blinking) statistics that are highly sensitive to the degree of ligand coverage on the quantum dot surface. As evidenced by a distinct surface height signature, fully covered CdSe-OPV nanostructures (approximately 25 ligands) show complete suppression of blinking in the solid state on an integration time scale of 1 s. Some access to dark states is observed on finer time scales (100 ms) with average persistence times significantly shorter than those from ZnS-capped CdSe quantum dots. This effect is interpreted as resulting from charge transport from photoexcited OPV into vacant trap sites on the quantum dot surface. These results suggest exciting new applications of composite quantum dot/organic systems in optoelectronic systems.  相似文献   
2.
High glass transition temperature poly(N‐cyclohexyl‐5‐norbornene‐2,3‐dicarboximide)s (NDI)s prepared by ring opening metathesis polymerization yielded polymers with a narrow polydispersity and well‐controlled molecular weight materials when using the Grubbs first generation initiator. Polymers produced using the Grubbs second generation initiator could not be controlled easily. By initiator selection it was also possible to synthesize polymers with either 98 or 52% trans microstructures. These materials were employed as electro‐optic (EO) polymer hosts for high molecular hyperpolarizability (β) phenyl vinylene thiophene vinylene bridge chromophores. This chromophore was modified by the incorporation of a tert‐butyldiphenylsilane group. The addition was able to further increase its EO coefficient (r33) to reach 93 pm/V in a trans rich poly(NDI) produced by the Grubbs first generation initiator, compared to a benchmark chromophore / polymer combination. We investigated in detail the relationship between polymer microstructure and their absolute molecular weight on forming the best host–guest with the high β chromophore. Our results indicate that by utilizing a very simple host–guest system a high r33 can be realized. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
3.
The temporal and spectral properties of luminescence from individual CdSe quantum dot-oligophenylene vinylene nanostructures (single quantum dots with conjugated organic ligands coordinated to the surface) are profoundly modified relative to blended films of the same components. These kinds of composite quantum dot-conjugated organic systems have attracted significant interest as a way to improve efficiency in photovoltaic device applications. By direct functionalization of the dot surface with the conjugated organic ligands, we realize a significant enhancement in energy transfer and luminescence stability.  相似文献   
4.
5.
High water‐soluble hyperbranched poly(styrene) (HPS) polymers carrying stable 2, 2, 6, 6‐tetramethylpiperidine‐1‐oxyl (TEMPO) radicals, HPS‐N‐TEMPO, HPS‐Im‐TEMPO, and HPS‐Im‐(TEMPO)2, were prepared in ca. 60% introducing yield. HPS‐N‐TEMPO and HPS‐Im‐TEMPO were determined to be nearly spherical shapes of the diameter of 2.4 ± 0.6 and 2.2 ± 0.6 nm, respectively, by transmission electron microscope (TEM) images. The values of water‐proton relaxivity, r1, at 25 MHz, 0.59 T, and 25 °C were 6.0, 5.2, and 14 mM?1 sec?1 for HPS‐N‐TEMPO, HPS‐Im‐TEMPO, and HPS‐Im‐(TEMPO)2, respectively. The spin‐lattice relaxation time (T1)‐weighted images in phantom were also observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
We go back and forth between, on the one hand, presentations of arithmetic and Kac-Moody groups and, on the other hand, presentations of profinite groups, deducing along the way new results on both.  相似文献   
7.
8.
Single-molecule fluorescence measurements of 2,7-bis(3,4,5-trimethoxyphenylethenyl)fluorenone (OFOPV) reveal narrow emission spectra concentrated around 540 nm, with weak emission at longer wavelengths. The wide scattering of emission-maximum wavelengths is attributed to varying molecular environments, with dimers or higher-order aggregates contributing to the low-energy emission. This spectral distribution indicates that emission from monomers of this model fluorenone is mostly green, which is consistent with contaminant emission (g-bands) often observed in fluorene- and polyfluorene-based organic light emitting diode (OLED) devices. A histogram of center wavelengths from 118 single-molecule spectra shows good agreement with the green emission previously observed in thermally stressed 2,7-bis(3,4,5-trimethoxyphenylethenyl)-9,9-diethylfluorene (OFPV). Whereas bulk OFPV exhibits blue fluorescence at about 480 nm, OFOPV bulk thin film measurements reveal red luminescence shifted to 630 nm. This unexpected peak position for bulk OFOPV shifts to higher energies (ca. 540 nm) upon dilution in a solid-state matrix, suggesting that the bulk red emission finds its origins in interactions between fluorenone molecules. Explanations for this red emission include aggregate or excimer formation or intermolecular energy transfer between fluorenone molecules.  相似文献   
9.
Nitroaromatics and nitroalkanes quench the fluorescence of Zn(Salophen) (H2Salophen = N,N'-phenylene-bis-(3,5-di- tert-butylsalicylideneimine); ZnL(R)) complexes. A structurally related family of ZnL(R) complexes (R = OMe, di-tBu, tBu, Cl, NO2) were prepared, and the mechanisms of fluorescence quenching by nitroaromatics were studied by a combined kinetics and spectroscopic approach. The fluorescent quantum yields for ZnL(R) were generally high (Phi approximately 0.3) with sub-nanosecond fluorescence lifetimes. The fluorescence of ZnL(R) was quenched by nitroaromatic compounds by a mixture of static and dynamic pathways, reflecting the ZnL(R) ligand bulk and reduction potential. Steady-state Stern-Volmer plots were curved for ZnL(R) with less-bulky substituents (R = OMe, NO2), suggesting that both static and dynamic pathways were important for quenching. Transient Stern-Volmer data indicated that the dynamic pathway dominated quenching for ZnL(R) with bulky substituents (R = tBu, DtBu). The quenching rate constants with varied nitroaromatics (ArNO2) followed the driving force dependence predicted for bimolecular electron transfer: ZnL* + ArNO2 --> ZnL(+) + ArNO2(-). A treatment of the diffusion-corrected quenching rates with Marcus theory yielded a modest reorganization energy (lambda = 25 kcal/mol), and a small self-exchange reorganization energy for ZnL*/ZnL(+) (ca. 20 kcal/mol) was estimated from the Marcus cross-relation, suggesting that metal phenoxyls may be robust biological redox cofactors. Electronic structure calculations indicated very small changes in bond distances for the ZnL --> ZnL(+) oxidation, suggesting that solvation was the dominant contributor to the observed reorganization energy. These mechanistic insights provide information that will be helpful to further develop ZnL(R) as sensors, as well as for potential photoinduced charge transfer chemistry.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号