首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   8篇
数学   1篇
  2022年   1篇
  2013年   2篇
  2008年   2篇
  2007年   1篇
  2002年   1篇
  1999年   2篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
The decision limit (CCα), capability of detection (CCβ) and quantification limit (QL) are importance performance characteristics in method validation. The TLC-Scanner 3 from Camag provides the possibility to choose the slit dimension of light to determine the peak chromatogram of a substance. The influence of the slit dimension for determination of CCα, CCβ and QL of paracetamol has been carried out. Paracetamol was spotted onto plates of AL-TLC Si G 60 F254 by linomat 4 in the range of 50–400 ng/spot and 10–400 ng/band, then on twin chambers eluted with TAEA (toluene:acetone-ethanol:conc.ammonia, 45 + 45 + 7 + 3 v/v) for 45 mm. Eluted spots were scanned in different slit dimensions at 248 nm. The CCα, CCβ and QL of paracetamol were estimated through the linear regression (LRM) and signal-to-noise (S/N) methods. Slit lengths between 50 and 133 % of the band width of the spots, and with the noise factor of the slit under 2.6, produced good precision measurements of TLC-densitometry between plates, while slit lengths between 50 and 83 % of the band width of the spots introduced a higher sensitivity response of the detector. The estimated CCα, CCβ and QL were determined by how the data were collected, the analytical optical setting, and the usage method for the estimation of both validation parameters.  相似文献   
2.
Surface properties of bleached kraft pulps were evaluated before and after recycling, and after a series of chemical treatments designed to improve and/or modify the pulp characteristics. The surface free energy characteristics of the pulps were determined using the Wilhelmy technique, and ESCA and ATR-FTIR methods were used to evaluate the chemical composition of the surfaces of the pulp fibers. In general rather small changes were noted at the fiber surfaces with recycling and chemical treatment. Recycling tended to increase the acid component and decrease the base component of the surface free energy of the pulps. This could result from exposure of carboxyl groups from hemicelluloses and/or from oxidized layers from the bleaching process. ESCA analyses also indicated increased carboxyl concentration at the surfaces of the recycled fibers. Although treatment with aqueous bases and organic solvents tended to increase the hydroxyl content on the surface of recycled pulps, the chemical treatments were not beneficial to pulp quality. AFM and SEM of fiber and fine surfaces of kraft pulps revealed that the fines fraction was altered to a much greater extent with recycling. Although recycled fibers appeared to have improved wettability, these small changes in the surface characteristics do not appear to play the dominant role in the characteristics of recycled pulps. Recycling did not change the crystallinity of whole pulps, but it increased the crystallinity of the fines fraction. The increase in the crystallinity of the fines fraction and the reduction in the water retention value (WRV) and the bulk carboxyl content (xylan) of the recycled pulps, as noted in Part I of this paper, appear to play the predominant role in determining the characteristics of recycled pulps. It appears that the loss of the hemicelluloses in the bulk of the fiber with recycling is much more important for internal fibrillation than the apparent small increase of hemicelluloses at the surface of recycled fibers.  相似文献   
3.
The studies of the Bulung Boni and Bulung Anggur (Caulerpa spp.) species and secondary metabolites are still very limited. Proper identification will support various aspects, such as cultivation, utilization, and economic interests. Moreover, understanding the secondary metabolites will assist in developing algae-based products. This study aimed to identify these indigenous Caulerpa algae and analyze their bioactive components. The tufA sequence was employed as a molecular marker in DNA barcoding, and its bioactive components were identified using the GC-MS method. The phylogenetic tree was generated in MEGA 11 using the maximum likelihood method, and the robustness of the tree was evaluated using bootstrapping with 1000 replicates. This study revealed that Bulung Boni is strongly connected to Caulerpa cylindracea. However, Bulung Anggur shows no close relationship to other Caulerpa species. GC-MS analysis of ethanolic extracts of Bulung Boni and Bulung Anggur showed the presence of 11 and 13 compounds, respectively. The majority of the compounds found in these algae have been shown to possess biological properties, such as antioxidant, antibacterial, anticancer, anti-inflammation, and antidiabetic. Further study is necessary to compare the data obtained using different molecular markers in DNA barcoding, and to elucidate other undisclosed compounds in these Caulerpa algae.  相似文献   
4.
The effect of low (LDR) and medium dose rate (MDR) of γ irradiation at low doses (0-100 kGy) on the structural and chemical changes of microporous polysulfone (PSf) membrane has been studied using UV-vis, FTIR, SEM and dead-end filtration techniques. PSf membrane was cast by phase inversion method. Irradiation was done at room temperature in air media. The doses chosen were 0-100 kGy for LDR and 0-50 kGy for MDR; they were below and above sterilization dose. Analysis of UV-vis and IR spectra and SEM images obtained suggested that chain scissions and crosslink had occurred simultaneously in the irradiated membranes in both cases. This radio-oxidation effects observed start at a very low dose i.e. 1.66 kGy and increase with increase in dose. It is supported by the flux values obtained; it is increased with increase in dose. The results indicate that a very low dose γ irradiation was able to change the physicochemical characteristics of microporous PSf membrane which depend on dose rate of exposure.  相似文献   
5.
In this paper we consider a single item, discrete time, lot sizing situation where demand is random and its parameters (e.g., mean and standard deviation) can change with time. For the appealing criterion of minimizing expected total relevant costs per unit time until the moment of the next replenishment we develop two heuristic ways of selecting an appropriate augmentation quantity beyond the expected total demand through to the planned (deterministic) time of the next replenishment. The results of a set of numerical experiments show that augmentation is important, particularly when orders occur frequently (i.e., the fixed cost of a replenishment is low relative to the costs of carrying one period of demand in stock) and the coefficient of variability of demand is relatively low, but also under other specified circumstances. The heuristic procedures are also shown to perform very favourably against a hindsight, baseline (sS) policy, especially for larger levels of non-stationarity.  相似文献   
6.
13C NMR spectroscopy shows that the n-alkene and n-alkane products from the catalytic hydrogenation of CO in the presence of (13)C(2)H(4) probes over Ru/150 degrees C, Co/180 degrees C, Fe/220 degrees C, or Rh/190 degrees C (1 atm, CO:H(2) 1:1, "mild conditions") contain terminal (13)CH(3)(13)CH(2)- units. This is consistent with their formation by a regiospecific polymerization of C(1) species derived from CO and initiated by (13)C(2)H(4). Although the activities toward individual products differed somewhat, similar distributions and similar product labeling patterns were obtained over all the four catalysts. 1-Butene and the higher 1-n-alkenes from all the catalysts were largely (13)CH(3)(13)CH(2)(CH(2))(n)()CH=CH(2) (n = 0-3), propene formed over Ru or Co was (13)CH(3)(13)CH=CH(2), while both (13)CH(3)(13)CH=CH(2) and (13)CH(2)=(13)CHCH(3) were formed over Fe or Rh. Comparison of the conclusions from these probe experiments with those from isotope transient experiments by other workers indicates that the ethene initiator does not significantly modify the course of the CO hydrogenation. The reaction products are largely kinetically determined, and the primary products are mainly linear 1-n-alkenes, while the n-alkanes and 2-n-alkenes largely arise via secondary processes. Since the distribution of products and the labeling in them is so similar, it is concluded that one basic primary mechanism applies over all the four metals. Several different reaction paths involving a polymerization of surface methylene, [CH(2(ad))], have been proposed. Although the predictions based on several of these mechanisms agree with many of the results, the alkenyl + [CH(2(ad))] mechanism, initiated by a surface vinyl [CH(2)=CH((ad))], most easily accommodates the experimental evidence. An alternative path involving sequential addition of surface methylidyne and hydride either to a growing alkylidene chain (alkylidene + [CH(ad) + H(ad)]) or to an alkyl chain (alkyl + [CH((ad)) + H(ad)]) has recently been proposed by van Santen and Ciobica. The [CH(2(ad))] mechanism offers an easier explanation for the formation of the various alkenes, the distribution of products, and of the initiation, while the [CH(ad) + H(ad)] mechanism can explain any n-alkanes formed as primary products and not derived from alkenes. At higher reaction temperatures over Ru and Co, considerable (13)C(1) incorporation (from natural abundance in the CO and from cleavage of the (13)C(2)H(4) probe) was found in all the hydrocarbons. Thus, at higher temperatures (13)C(1(ad)) in addition to (13)C(2(ad)) species participate in both chain growth and initiation. In summary, adsorbed CO is transformed very easily into surface C(1(ad)), probably [CH(2(ad))] in equilibrium with [CH((ad))+H(ad)], which act as the propagating species.  相似文献   
7.
The mechanical, physical, and chemical properties of recycled pulps were evaluated after a series of treatments designed to improve and/or modify the pulp characteristics. Tensile strength, bursting strength, and apparent density of the pulps decreased with recycling. However, the tear strength, in most cases, increased after the first recycle and then decreased after the second recycle. Carboxyl content and WRV of pulps also decreased with recycling. Chemical treatments did not increase the bonding ability of recycled pulps and, in most cases, decreased the physical properties of the pulps. Altering the physical state of the cellulose microstructure through additional swelling did not appear to be a significant factor for strength restoration. It may be that the hemicelluloses plan a greater role in recycling than originally thought.  相似文献   
8.
The gene encoding a thermostable β-d-xylosidase (GbtXyl43B) from Geobacillus thermoleovorans IT-08 was cloned in pET30a and expressed in Escherichia coli; additionally, characterization and kinetic analysis of GbtXyl43B were carried out. The gene product was purified to apparent homogeneity showing M r of 72 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme exhibited an optimum temperature and pH of 60 °C and 6.0, respectively. In terms of stability, GbtXyl43B was stable at 60 °C at pH 6.0 for 1 h as well as at pH 6–8 at 4 °C for 24 h. The enzyme had a catalytic efficiency (k cat/K M) of 0.0048?±?0.0010 s?1 mM?1 on p-nitrophenyl-β-d-xylopyranoside substrate. Thin layer chromatography product analysis indicated that GbtXyl43B was exoglycosidase cleaving single xylose units from the nonreducing end of xylan. The activity of GbtXyl43B on insoluble xylan was eightfold higher than on soluble xylan. Bioinformatics analysis showed that GbtXyl43B belonging to glycoside hydrolase family 43 contained carbohydrate-binding module (CBM; residues 15 to 149 forming eight antiparallel β-strands) and catalytic module (residues 157 to 604 forming five-bladed β-propeller fold with predicted catalytic residues to be Asp287 and Glu476). CBM of GbtXyl43B dominated by the Phe residues which grip the carbohydrate is proposed as a novel CBM36 subfamily.  相似文献   
9.
In this paper we report the preparation and characterization of [Gd(dtpa)](2-) intercalated layered double hydroxide (LDH) nanomaterials. [Gd(dtpa)](2-) (gadolinium(III) diethylene triamine pentaacetate) was transferred into LDH by anionic exchange. The intercalation of [Gd(dtpa)](2-) into LDH was confirmed by X-ray diffraction for the new phase with the interlayer spacing of 3.5-4.0 nm and by FTIR for the characteristic vibration peaks of [Gd(dtpa)](2-). The morphology of the nanoparticles was influenced by the extent of [Gd(dtpa)](2-) loading, in which the poly-dispersity quality decreased as the [Gd(dtpa)](2-) loading was increased. Compared with the morphology of the original Mg(2)Al-Cl-LDH nanoparticles (hexagonal plate-like sheets of 50-200 nm), the modified LDH-Gd(dtpa) nanoparticles are bar-like with a width of 30-60 nm and a length of 50-150 nm. LDH-Gd(dtpa) was expected to have an increased water proton magnetic resonance relaxivity due to the intercalation of [Gd(dtpa)](2-) into the LDH interlayer that led to slower molecular anisotropic tumbling compared with free [Gd(dtpa)](2-) in solution. Indeed, LDH-nanoparticle suspension containing approximately 1.6 mM [Gd(dtpa)](2-) exhibits a longitudinal proton relaxivity r(1) of approximately 16 mM(-1) s(-1) and a transverse proton relaxivity r(2) of approximately 50 mM(-1) s(-1) at room temperature and a magnetic field of 190 MHz, which represents an enhancement four times (r(1)) and 12 times (r(2)) that of free [Gd(dtpa)](2-) in solution under the same reaction conditions. We have thus tailored LDH-nanoparticles into a novel contrast agent with strong relaxivity, promising for great potential applications in magnetic resonance imaging.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号