首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Instability of highly concentrated emulsions of the water-in-oil type which were investigated in this work is related to the existence of the internal phase as an oversaturated salt solution in water. The principal features of crystallization of these systems were studied by as earlier. This study is devoted to the development of this investigation and based on involving different surfactants and various concentrations of surfactants. It was shown that the originally proposed mechanism of crystallization, which suggested that growing crystals break through interfacial layers, was valid for all highly concentrated emulsions under investigation. Moreover, the Kholmogorov-Avrami kinetic equation with an unusually high exponent value equal to 6 is also applicable to different systems. It was proven that the general relationship between the growth of the yield stress and the degree of crystallization can be formulated for all surfactants studied in the work. The role of a surfactant consists in varying the characteristic time constant for the rate of crystallization. This time constant is much lower for a low-molecular-weight surfactant compared to oligomeric surfactants. This constant noticeably increases with an increase of concentration and the decrease of the average droplet size.  相似文献   
2.
Primary aromatic amides were prepared by a palladium-catalyzed aminocarbonylation reaction of aryl halides in high yields (70-90%) using formamide as the amine source. The reactions require a palladium catalyst in combination with a nucleophilic Lewis base such as imidazole or 4-(dimethylamino)pyridine (DMAP). Aryl, heteroaryl, and vinyl bromides and chlorides were converted to the primary amides under mild conditions (5 bar, 120 degrees C) using 1 mol % of a palladium-phosphine complex. Best results were obtained in dioxane using triphenylphosphine as the ligand and DMAP as the base. For activated aryl bromides, a phosphine-to-palladium ratio of 2:1 was sufficient, but less reactive aryl bromides or aryl chlorides required ligand-to-palladium ratios up to 8:1 in order to stabilize the catalyst and achieve full conversion. The influence of catalyst, base, solvent, pressure, and temperature was studied in detail. The mechanism of the reaction could be clarified by isolating and identifying the reaction intermediates. In addition, methylamides and dimethylamides were prepared by the same method using N-methylformamide and N,N-dimethylformamide as the amine source.  相似文献   
3.
The water-in-oil high internal phase emulsions were the subject of the study. The emulsions consisted of a super-cooled aqueous solution of inorganic salt as a dispersed phase and industrial grade oil as a continuous phase. The influence of the industrial grade oil type on a water-in-oil high internal phase emulsion stability was investigated. The stability of emulsions was considered in terms of the crystallization of the dispersed phase droplets (that are super-cooled aqueous salt solution) during ageing. The oils were divided into groups: one that highlighted the effect of oil/aqueous phase interfacial tension and another that investigated the effect of oil viscosity on the emulsion rheological properties and shelf-life. For a given set of experimental conditions the influence of oil viscosity for the emulsion stability as well as the oil/aqueous interfacial tension plays an important role. Within the frames of our experiment it was found that there are oil types characterized by optimal parameters: oil/aqueous phase interfacial tension being in the region of 19–24 mN/m and viscosity close to 3 mPa s; such oils produced the most stable high internal phase emulsions. It was assumed that the oil with optimal parameters kept the critical micelle concentration and surfactant diffusion rate at optimal levels allowing the formation of a strong emulsifier layer at the interface and at the same time creating enough emulsifier micelles in the inter-droplet layer to prevent the droplet crystallization.  相似文献   
4.
The effect of hydrophobicity index (HI) of fumed nanosilica specimens on stability of water-in-oil (W/O) highly concentrated emulsions (HCE with ? = 90 vol%) with an overcooled dispersed phase was studied. A series of five silica with HI in the 0.60–1.34 range and HI > 3 were used separately and in combination with a low molecular weight traditional surfactant, Sorbitan MonoOleate (SMO). First, it was shown that SMO alone can stabilize W/O HCE whereas only silica nanoparticles with intermediate HI in the range 0.97 ≤ HI ≤ 1.34 could form W/O emulsions only up to 77–79 vol%. Then, on the contrary to SMO-based emulsions, Pickering emulsions are unstable under shearing. When mixed (silica plus SMO) emulsifier systems were used, firstly a thermodynamic consideration revealed that only SMO is likely to adsorb at the W/O interface and controls the emulsifying process by the decrease in the interfacial tension. Then, interestingly, all different kinds of emulsion stability investigated in this study demonstrate a breaking point (BP) at HI = 0.97. Below the BP the emulsions were found to be very unstable on shelf as well as under shear. Above the BP, a clear synergy between colloidal silica and SMO surfactant has been found.   相似文献   
5.
Shear stability of water-in-oil highly concentrated emulsions was characterized by the rate of the droplet size decrease at a constant shear rate. Samples of different concentration (ranging from 0.85 to 0.94 wt %), prepared with different surfactants and three types of oils were analysed. The emulsions under study are visco-plastic media with a clearly expressed yield stress. The usually used Capillary number is not valid for such systems but instead Bingham number (ratio of the yield stress to interfacial forces) was used to characterise their stability. Within the frames of our experiment, it has been proven that the correlation between shear stability of emulsions and the Bingham number exists.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号