首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
化学   6篇
力学   1篇
物理学   10篇
  2020年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2007年   4篇
  2006年   2篇
  2002年   1篇
  1999年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
We report the temperature dependence of electrical resistance (R) and thermopower (S) of clathrate Cs8Sn44 under high pressure up to 1.2 GPa. We observe a reversible gap widening, prominent relaxation effect of R, irreversible increase of |S| under high pressure. We also find that the power factor S2σ (σ: electrical conductivity) reaches a maximum at pressure of 0.3 GPa. Comparison of the experimental results with band structure calculations suggests that the intrinsic vacancy in the clathrate structure of Cs8Sn44 plays an important role in transport properties under high pressure. Measurements on Cs8Zn4Sn42, a clathrate which has defects other than vacancies, are compared with Cs8Sn44. The results indicate that replacing Sn by Zn has similar effect as the intrinsic vacancy on S.  相似文献   
2.
M?ssbauer-effect and microwave absorption experimental evidence unambiguously demonstrates the presence of slow, approximately 450 MHz, tunneling of magnetic europium between four equivalent sites in Eu8Ga16Ge30, a stoichiometric clathrate. Remarkably, six of the eight europium atoms, or 11% of the constituents in this solid, tunnel between these four sites separated by 0.55 A. The off centering of the atoms or ions in crystalline clathrates appears to be a promising route for producing Rabi oscillators in solid-state materials.  相似文献   
3.
New inorganic type II clathrates with Ag atoms substituting for framework Ge atoms, Cs8Na16AgxGe136−x (x=0, 5.9, and 6.7), have been synthesized by reaction of the pure elements at high temperature. Structural refinements have been performed using single crystal X-ray diffraction. The materials crystallize with the cubic type II clathrate crystal structure (space group ) with a=15.49262(9) Å, 15.51605(6) Å, and 15.51618(9) for x=0, 5.9, and 6.7, respectively, and Z=1. The structure is formed by a covalently bonded Ag-Ge framework, in which the Cs and Na atoms are found inside two types of polyhedral cages. Ag substitutes for Ge in the tetrahedrally bonded framework positions, and was found to preferentially occupy the most asymmetric 96g site. The proven ability to substitute atoms for the germanium framework should offer a route to the synthesis of new compositions of type II clathrates, materials that are of interest for potential thermoelectrics applications.  相似文献   
4.
A molten Al flux method was used to grow single crystals of the type I clathrate compound Ba8Al14Si31. Single-crystal neutron diffraction data for Ba8Al14Si31 were collected at room temperature using the SCD instrument at the Intense Pulsed Neutron Source, Argonne National Laboratory. Single-crystal neutron diffraction of Ba8Al14Si31 confirms that the Al partially occupies all of the framework sites (R1 = 0.0435, wR2 = 0.0687). Stoichiometry was determined by electron microprobe analysis, density measurements, and neutron diffraction analysis. Solid-state (27)Al NMR provides additional evidence for site preferences within the framework. This phase is best described as a framework-deficient solid solution Ba8Al14Si31, with the general formula, Ba(8)Al(x)Si(42-3/4x)[](4-1/4x) ([] indicates lattice defects). DSC measurements and powder X-ray diffraction data indicate that this is a congruently melting phase at 1416 K. Temperature-dependent resistivity reveals metallic behavior. The negative Seebeck coefficient indicates transport processes dominated by electrons as carriers.  相似文献   
5.
A series of anthraquinone (C(14)O(2)H(8)) derivatives has been studied by means of electron capture negative ion mass spectrometry (ECNI-MS), photoelectron spectroscopy (PES), and AM1 quantum chemical calculations. Mean lifetimes of molecular negative ions M(-.) (MNI) have been measured. The mechanism of long-lived MNI formation in the epithermal energy region of incident electrons has been investigated. A simple model of a molecule (a spherical potential well with the repulsive centrifugal term) has been applied for the analysis of the energy dependence of cross sections at the first stage of the electron capture process. It has been shown that a temporary resonance of MNI at the energy approximately 0.5 eV corresponds to a shape resonance with lifetime 1-2.10(-13) s in the f-partial wave (l = 3) of the incident electron. The next resonant state of MNI at the energy approximately 1.7 eV has been associated with the electron excited Feshbach resonance (whose parent state is a triplet npi* transition). In all cases the initial electron state of the MNI relaxes into the ground state by means of a radiationless transition, and the final state of the MNI is a nuclear excited resonance with a lifetime measurable on the mass spectrometry timescale. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
6.
Quaternary stannites with an excess of copper were successfully synthesized by reacting the constituent elements and subsequent solid state annealing, followed by densification by hot‐pressing. The composition for each specimen was confirmed with a combination of Rietveld refinement and elemental analysis. Their high temperature thermoelectric properties were measured from 300 K to 800 K and compared with that of Cu2ZnSnSe4. The thermal conductivity decreases significantly with increasing Cu content at elevated temperatures due to the crystal structure of this material system. A maximum ZT value of 0.86 was obtained at 800 K for the specimen with the highest Cu content, Cu2.2Zn0.8SnSe4. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
7.
A stabilized finite element method, to carry out the linear stability analysis of a two‐dimensional base flow to three‐dimensional perturbations that are periodic along span, is presented. The resulting equations for the time evolution of the disturbance requires a solution to the generalized eigenvalue problem. The analysis is global in nature and is also applicable to non‐parallel flows. Equal‐order‐interpolation functions for velocity and pressure are utilized. Stabilization terms are added to the Galerkin formulation to admit the use of equal‐order‐interpolation functions and to eliminate node‐to‐node oscillations that might arise in advection‐dominated flows. The proposed formulation is tested on two flow problems. First, the mode transitions in the circular Couette flow are investigated. Two scenarios are considered. In the first one, the outer cylinder is at rest, while the inner one spins. Two linearly unstable modes are identified. The primary mode is real and represents the axisymmetric Taylor vortices. The second mode is complex and consists of spiral vortices. For the counter‐rotating cylinders, the primary transition is via the appearance of spiral vortices. Excellent agreement with results from earlier studies is observed. The formulation is also utilized to investigate the parallel and oblique modes of vortex shedding past a cylinder for the Re = 100 flow. It is found that the flow is associated with a large number of unstable oblique shedding modes. The parallel mode of vortex shedding is a special case of this family of modes and is associated with the largest growth rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic‐structure calculations of one such material, PbCuSbS3. Our analysis is presented in terms of a comparative study with Sb2S3, from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone‐pair s2 electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase‐change‐memory, thermal‐barrier, thermal‐rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought.  相似文献   
9.
10.
Partially filled polycrystalline p‐type skutterudites of nominal compositions Ybx Co3FeSb12 were synthesized and their thermoelectric properties characterized. The compositions and filling fractions were confirmed with a combination of Rietveld refinement and elemental analysis. The thermoelectric properties were evaluated from 300 K to 810 K. The Seebeck coefficient and resistivity increase while the thermal conductivity decreases with increasing Yb content. A maximum ZT value of 0.85 was obtained at 810 K. This work is part of a continuing effort to enhance the thermoelectric properties of p‐type skutterudites, as this class of materials continues to be of interest for thermoelectrics applications. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号