首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   5篇
  国内免费   2篇
化学   153篇
晶体学   8篇
力学   1篇
数学   6篇
物理学   43篇
  2023年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   6篇
  2010年   8篇
  2009年   5篇
  2008年   9篇
  2007年   9篇
  2006年   7篇
  2005年   16篇
  2004年   13篇
  2003年   16篇
  2002年   11篇
  2001年   11篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1969年   1篇
  1954年   1篇
  1907年   2篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
1.
2.
3.
Nanoporous alumina membrane prepared by anodic oxidation using sulfuric acid electrolyte was subjected to TG-DTA and X-ray Photoelectron Spectroscopy (XPS or ESCA) to further study the distribution of sulfur. In XPS study, Ar+ ion bombardment was performed on the sample to etch the surface at a rate of 3 nm min-1. As a result, sulfur was found to be concentrated within a depth of 3nm from the surface. The S content of the surface was found to be 2.7±0.5 wt%, and that at a depth of ca. 3 nm and ca. 10 nm was found to be as low as about 0.6±0.11 wt% (5.37±1.0 wt%→ 1.26±0.2wt% SO2). In TG-DTA, the mass loss of 7.3% was in fair agreement with that calculated on XPS results (7.1±1.2%). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
Abstract— Hematoporphyrin, having two carboxylic groups, was coupled with α-(3-aminopropyl)-ω-methoxypoly(oxyethylene), PEG-NH2, through acid-amide bond formed with carbodtimide. PEG-modified hematoporphyrin was readily soluble not only in neutral aqueous solution but also in organic solvents. Its absorption spectrum showed a sharp band at 376 nm in neutral aqueous solution and at 403 nm in benzene. Modified hematoporphyrin acted as a photosensitizer; imidazole and indole were photooxidized in organic solvents such as benzene or chloroform, and uric acid was also photooxidized in neutral aqueous solution.  相似文献   
5.
The investigation of the MeOH extract of the leaves of Chisocheton weinlandii Harms (Meliaceae) revealed two new open‐chain spermidine alkaloids, chisitine 1 ( 1 ) and chisitine 2 ( 2 ). Their structures were elucidated by NMR spectroscopy, tandem‐mass spectrometry, and independant syntheses (Scheme 3). Detailed MS/MS fragmentation pathways are discussed for both compounds based on H/D exchange and 18O‐labeling experiments (Schemes 1 and 2).  相似文献   
6.
The transition and the change in pore morphology of a porous alumina membrane prepared by anodically oxidizing aluminum in sulfuric acid were studied mainly by TG-DTA, TMA, dilatometry and TEM. At ca. 1243 K, TMA showed an expansion followed by contraction; the CO2 and SO2 gases were quickly discharged, and the pore morphology of the as-prepared porous membrane (ca 150 mm-t, with pores ca 25 nm in diameter and containing ca 11% by mass of SO2) showed an abrupt change, but the pores were retained to ca. 1573 K. Sulfur incorporated in the membrane was lost in two stages, i.e., at ca 1243 K and in a range up to 1373 K. Isothermal measurements revealed the complex crystallization of the amorphous phase into polycrystalline phase. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
The scope and limitations of the ruthenium-catalyzed propargylic substitution reaction of propargylic alcohols with heteroatom-centered nucleophiles are presented. Oxygen-, nitrogen-, and phosphorus-centered nucleophiles such as alcohols, amines, amides, and phosphine oxide are available for this catalytic reaction. Only the thiolate-bridged diruthenium complexes can work as catalysts for this reaction. Results of some stoichiometric and catalytic reactions indicate that the catalytic propargylic substitution reaction proceeds via an allenylidene complex formed in situ, whereby the attack of nucleophiles to the allenylidene C(gamma) atom is a key step. Investigation of the relative rate constants for the reaction of propargylic alcohols with several para-substituted anilines reveals that the attack of anilines on the allenylidene C(gamma) atom is not involved in the rate-determining step and rather the acidity of conjugated anilines of an alkynyl complex, which is formed after the attack of aniline on the C(gamma) atom, is considered to be the most important factor to determine the rate of this catalytic reaction. The key point to promote this catalytic reaction by using the thiolate-bridged diruthenium complexes is considered to be the ease of the ligand exchange step between a vinylidene ligand on the diruthenium complexes and another propargylic alcohol in the catalytic cycle. The reason why only the thiolate-bridged diruthenium complexes promote the ligand exchange step more easily with respect to other monoruthenium complexes in this catalytic reaction should be that one Ru moiety, which is not involved in the allenylidene formation, works as an electron pool or a mobile ligand to another Ru site. The catalytic procedure presented here provides a versatile, direct, and one-step method for propargylic substitution of propargylic alcohols in contrast to the so far well-known stoichiometric and stepwise Nicholas reaction.  相似文献   
8.
A novel cationic methanethiolate-bridged diruthenium complex [Cp*RuCl(mu2-SMe)2RuCp*(OH2)]OTf (1e) has been disclosed to promote the catalytic propargylic substitution reaction of propargylic alcohols bearing not only terminal alkyne group but also internal alkyne group with thiols. It is noteworthy that neutral thiolate-bridged diruthenium complexes (1a-1c), which were known to promote the propargylic substitution reactions of propargylic alcohols bearing a terminal alkyne group with various heteroatom- and carbon-centered nucleophiles, did not work at all. The catalytic reaction described here provides a general and environmentally friendly preparative method for propargylic sulfides, which are quite useful intermediates in organic synthesis, directly from the corresponding propargylic alcohols and thiols.  相似文献   
9.
Novel phosphonylation of the active Me group of pyridine derivatives is described.Reaction of 2 (and 4) -methylpyridine (3 and 5) with PCl5 in POCl3 gave 2 (and 4) -trichloromethylpyridine (4 and 6). Similarly, reaction of 4 (and 6) methyl-3-nitropyridine (7 and 9) afforded the corresponding trichloromethyl derivative (8 and 10). However, the similar reaction of 2-methyl-3-nitropyridine (11) gave dichloro-(3-nitro-2-pyridyl)-methylphosphonic dichloride (12).Mechanisms of the formation of these products are discussed.  相似文献   
10.
Herein we report the production of enantiopure epoxides through biocatalysis using recombinant Escherichia coli cells expressing Rhodococcus sp. ST-10 styrene monooxygenase (SMO) and Leifsonia sp. S749 alcohol dehydrogenase (LSADH) genes are described. Rhodococcus sp. ST-10 SMO catalyzed the epoxidation of various alkenes, including styrene derivatives, vinyl pyridines, and linear alkenes, to give (S)-epoxides. NADH was regenerated by the reduction of NAD+ by LSADH with 2-propanol. The E. coli biocatalyst was used in an aqueous/organic biphasic reaction system and the reaction conditions were optimized. Under the optimized conditions, 170 mM of (S)-styrene oxide was obtained from styrene in the organic phase with excellent enantiomeric excess (99.8%). This biocatalytic process was used to synthesize various (S)-epoxides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号