首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   8篇
化学   226篇
晶体学   3篇
力学   5篇
物理学   50篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   9篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   20篇
  2011年   18篇
  2010年   4篇
  2009年   7篇
  2008年   15篇
  2007年   20篇
  2006年   21篇
  2005年   7篇
  2004年   16篇
  2003年   19篇
  2002年   14篇
  2001年   10篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1974年   7篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
1.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
2.
In this study, a novel potentiometric titration of hydroperoxide in degraded polypropylene (PP) is proposed. This titration is quite sensitive compared with the conventional ones such as UV and manual titrations, and its detection limit was about 2 meq/kg. The sensitivity was equal to that of molecular weight measurement by GPC for the degraded PP and, in addition, the volatilization behavior of the hydroperoxide could be detected. This titration was found to be very effective for the determination of PP degradation.  相似文献   
3.
4.
The binding of a dimeric form of the 2-amino-1,8-naphthyridine derivative (naphthyridine dimer) to a human telomeric sequence, TTAGGG, was investigated by UV melting, CD spectra, and CSI-MS measurements. Both the 9-mer d(TTAGGGTTA) and the 15-mer d(TTAGGGTTAGGGTTA) showed apparent melting temperatures (T(m)) of 45.6 and 63.6 degrees C, respectively, in the presence of naphthyridine dimer (30 microM) in sodium cacodylate buffer (50 mM, pH 7.0) containing 100 mM NaCl. The CD spectra at 235 and 255 nm of the 9-mer increased in intensity accompanied with strong induced CDs at 285 and 340 nm upon complex formation with naphthyridine dimer. UV titration of the binding of naphthyridine dimer to the 9-mer at 320 nm showed a hypochromism of the spectra. A Scatchard plot of the data showed the presence of multiple binding sites with different association constants. Cold spray ionization mass spectrometry of the complex between naphthyridine dimer and the 9-mer clearly showed that one to three molecules of the ligand bound to the dimer duplex of the 9-mer. Telomeric repeat elongation assay showed that the binding of naphthyridine dimer to the telomeric sequence inhibits the elongation of the sequence by telomerase.  相似文献   
5.
Exploration of novel organic luminophores that exhibit thermally activated delayed fluorescence (TADF) in the aggregated state is very crucial for advance of delayed luminescence-based applications such as time-gated bio-sensing and temperature sensing. We report herein that synthesis, photophysical properties, molecular and crystal structures, and theoretical calculations of 2,6-bis (diarylamino)benzophenones. Absorption spectra in solution and calculations using density functional theory (DFT) method revealed that the optical excitation took place through intramolecular charge-transfer from one diarylamino moiety to an aroyl group. While the benzophenones did not luminesce in solution, the solids of the benzophenones emitted green light with moderate-to-good quantum yields. Thus, the benzophenones exhibit aggregation-induced emission. Based on the lifetime measurement, the green emission of the solids was found to include TADF. The emergence of the TADF is supported by the small energy gap between the excited singlet and triplet states, which was estimated by time-dependent DFT calculations. Thin films of poly(methyl methacrylate) doped by the benzophenones also showed green prompt and delayed fluorescence whose lifetimes were in the order of microseconds. Linear correlation between logarithm value of TADF lifetime and temperature was observed with the benzophenone in powder, suggesting that the benzophenones can serve as molecular thermometers workable under aqueous conditions.  相似文献   
6.
A tandem three-component coupling photoreaction proceeds upon photoirradiation of MeCN/H2O solutions containing propanedinitrile (1, malononitrile), 2,5-dimethylhexa-2,4-diene (2), and polycyanoarenes in the presence of phenanthrene and carbonate, leading to selective alpha-monoalkylation of 1. The reaction proceeds via photo-NOCAS (Nucleophile-Olefin Combination, Aromatic Substitution) type mechanism: nucleophilic attack of the anion of 1 to photogenerated 2(*+) is followed by ipso-substitution on the radical anion of the polycyanoarene. It advances under mild, safe, and environmentally friendly conditions such as proceeding at ambient temperature without metals and halogens, and in the presence of weak base. The reaction also represents a novel and metal-free cross-coupling reaction that leads to ipso-substitution on polycyanoarene via aryl-cyano bond cleavage. In addition, the reaction is a rare example of introducing carbon nucleophile in the photoinduced electron transfer reaction, except that of cyanide ion.  相似文献   
7.
We have studied effects of added elements as well as defects on trap-sites of hydrogen in metals. For the purpose, we observed depth profiles and thermal behaviors of hydrogen implanted into Al-1.5 at.% Si alloy samples in an implantation-temperature range of liquid nitrogen temperature (LNT) to 373 K at different doses. The results were compared with those for pure aluminum samples. It was found that hydrogen is trapped as molecules in grain boundaries of Al/Si.  相似文献   
8.
The first asymmetric total synthesis of spongotine A is described. The oxidative synthesis of the imidazoline/ketone unit from keto aldehyde and diamine is a key step in this synthesis. The absolute stereochemistry of the asymmetric center of natural spongotine A is revealed as the (S)-configuration.  相似文献   
9.
A unified ion-exclusion chromatography(IEC) system for monitoring anionic and cationic nutrients like NH + 4,NO 2,NO 3,phosphate ion,silicate ion and HCO 3 was developed and applied to several environmental waters.The IEC system consisted of four IEC methodologies,including the IEC with ultraviolet(UV) detection at 210 nm for determining NH + 4 on anion-exchange separation column in OH form connected with anion-exchange UV-conversion column in I form in tandem,the IEC with UV-detection at 210 nm for determining simultaneously NO 2 and NO 3 on cation-exchange separation column in H + form,the IEC with UV-detection at 210 nm for determining HCO 3 on cation-exchange separation column in H + form connected with anion-exchange UV-conversion column in I form in tandem,and the IEC with visible-detection based on molybdenum-blue reaction for determining simultaneously silicate and phosphate ions on cation-exchange separation column in H + form.These IEC systems were combined through three manually-driven 6-port column selection valves to select each separation column to determine selectively the ionic nutrients.Using this sequential water quality monitoring system,the analytical performances such as calibration linearity,reproducibility,detection limit and recovery were also tested under the optimized chromatographic conditions.This novel water quality monitoring system has been applied successfully for the determination of the ionic eutrophication components in sub-urban river waters.  相似文献   
10.
Ion-exclusion/anion-exchange chromatography(IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH——form with basic eluent has been developed.The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase.This system is useful for simultaneous separation and determination of ammonium ion(NH+4),nitrite ion(NO-2),and nitrate ion(NO-3) in water samples.The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column.In this study,several separation columns,which consisted of different particle sizes,different functional groups and different anion-exchange capacities,were compared.As the results,the separation column with the smaller anion-exchange capacity(TSKgel Super IC-Anion) showed well-resolved separation of cations and anions.In the optimization of the basic eluent,lithium hydroxide(LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L,considering the resolution of analyte ions and the whole retention times.In the optimal conditions,the relative standard deviations of the peak areas and the retention times of NH+4,NO-2,and NO-3 ranged 1.28%-3.57% and 0.54%-1.55%,respectively.The limits of detection at signal-to-noise of 3 were 4.10 μmol/L for NH+4,1.87 μmol/L for NO-2 and 2.83 μmol/L for NO-3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号