首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   3篇
物理学   5篇
  2014年   1篇
  2002年   1篇
  2001年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有8条查询结果,搜索用时 125 毫秒
1
1.
Summary Optically pure (+)-beta-eudesmol is a possible starting material for the synthesis of several termite defense compounds. A two step procedure for the isolation of gram quantities of (+)-beta-eudesmol from commercially availableAmyris balsamifera oil (syn. West Indian sandalwood oil), containing 8% beta-eudesmol, was developed. Step one consisted of an efficient vacuum distillation of the total oil. Step two was a medium pressure LC separation with an AgNO3 impregnated silica gel stationary phase. Several other separation procedures failed due to the presence of many closely related sesquiterpene alcohols (75% of the oil).  相似文献   
2.
3.
Diffusion coefficient of DNA molecules during free solution electrophoresis   总被引:1,自引:0,他引:1  
The free-draining properties of DNA normally make it impossible to separate nucleic acids by free-flow electrophoresis. However, little is known, either theoretically or experimentally, about the diffusion coefficient of DNA molecules during free-flow electrophoresis. In fact, many authors simply assume that the Nernst-Einstein relation between the mobility and the diffusion coefficient still holds under such conditions. In this paper, we present an experimental study of the diffusion coefficient of both ssDNA and dsDNA molecules during free-flow electrophoresis. Our results unequivocally show that a simplistic use of Nernst-Einstein's relation fails, and that the electric field actually has no effect on the thermal diffusion process. Finally, we compare the dependence of the diffusion coefficient upon DNA molecular size to results obtained previously by other groups and to Zimm's theory.  相似文献   
4.
5.
Detailed diagnostic of antiproton beams at low energies is required for essentially all experiments at the Antiproton Decelerator (AD), but will be particularly important for the future Extra Low ENergy Antiproton ring (ELENA) and its keV beam lines to the different experiments. Many monitors have been successfully developed and operated at the AD, but in particular beam profile monitoring remains a challenge. A dedicated beam instrumentation and detector test stand has recently been setup at the AE \(\bar {g}\) IS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy). Located behind the actual experiment, it allows for parasitic use of the antiproton beam at different energies for testing and calibration. With the aim to explore and validate different candidate technologies for future low energy beam lines, as well as the downstream antihydrogen detector in AE \(\bar {g}\) IS, measurements have been carried out using Silicon strip and pixel detectors, a purpose-built secondary emission monitor and emulsions. Here, results from measurements and characterization of the different detector types with regard to their future use at the AD complex are presented.  相似文献   
6.
7.
8.
Nkodo AE  Tinland B 《Electrophoresis》2002,23(16):2755-2765
We determined simultaneously the electrophoretic mobility, diffusion coefficient D and molecular orientation during electrophoresis of dsDNAs in polymer solutions ranging from the dilute to the semidilute regime. We established, for the first time, master scaling laws for the diffusion coefficient showing a universal behavior. A model found in the literature designed for the dilute regime allows, surprisingly, to describe the mobility data over the whole range of concentrations studied and at the same time the biased reptation with fluctuations (BRF) failed for the semidilute regime, even when constraint release of the network was taken into account. These quantitative determinations of D are of practical interest to evaluate band broadening during capillary electrophoresis and provide data for stimulating investigation of the physics of DNA electrophoretic motion.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号