首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   0篇
化学   26篇
力学   8篇
数学   3篇
物理学   33篇
  2021年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
1.
Unsteady, axisymmetric stagnation flow about a circular cylinderis examined when the far-field flow is a periodic function oftime with a fixed time average and an oscillatory part of prescribedamplitude and frequency. Solutions are computed for arbitraryvalues of the Reynolds number, quantifying the effects of surfacecurvature, and a frequency parameter based on the period ofthe far-field flow. It is found that solutions remain regularand periodic provided that the far-field amplitude lies belowa critical value. Above this value, solutions terminate in afinite-time singularity. The blow-up time is delayed by increasingthe curvature of the surface. These results are corroboratedby asymptotic predictions valid in the limits of small and largeamplitude and frequency. For large Reynolds number, the problemreduces to the two-dimensional stagnation-point flow againsta plane wall studied by previous authors.  相似文献   
2.
By performing first-principles Molecular Dynamics simulations at 300 K, we show that water dissociates on the A-La2O3(001) surface giving rise to one exclusive type of hydroxyl-group, which is associated with a surface reconstruction, incorporating an additional oxygen ion into the oxide subsurface, yielding a surface structure that is oxygen rich.  相似文献   
3.
S -nitrosothiols have many biological activities and may act as nitric oxide (NO) carriers and donors, prolonging NO half-life in vivo. In spite of their great potential as therapeutic agents, most S -nitrosothiols are too unstable to isolate. We have shown that the S -nitroso adduct of N -acetylcysteine (SNAC) can be synthesized directly in aqueous and polyethylene glycol (PEG) 400 matrix by using a reactive gaseous (NO/O2) mixture. Spectral monitoring of the S–N bond cleavage showed that SNAC, synthesized by this method, is relatively stable in nonbuf-fered aqueous solution at 25°C in the dark and that its stability is greatly increased in PEG matrix, resulting in a 28-fold decrease in its initial rate of thermal decomposition. Irradiation with UV light (λ= 333 nm) accelerated the rate of decomposition of SNAC to NO in both matrices, indicating that SNAC may find use for the photogeneration of NO. The quantum yield for SNAC decomposition decreased from 0.65 ± 0.15 in aqueous solution to 0.047 ± 0.005 in PEG 400 matrix. This increased stability in PEG matrix was assigned to a cage effect promoted by the PEG microenvironment that increases the rate of geminated radical pair recombination in the homolytic S–N bond cleavage process. This effect allowed for the storage of SNAC in PEG at −20°C in the dark for more than 10 weeks with negligible decomposition. Such stabilization may represent a viable option for the synthesis, storage and handling of S -nitrosothiol solutions for biomedical applications.  相似文献   
4.
5.
The results of both experimental studies and molecular dynamics simulations indicate that crystals exhibit strong size effects at the sub-micron scale. In experimental studies, the size effects are usually explained by strain gradients. By contrast, atomistic simulations suggest that the yield strength depends on the size even without strain gradients and scales with the sample size through a power relationship. Here we address these two different approaches to the size dependence of mechanical properties. Results of uniaxial compression experiments on gold single crystals at the sub-micron scale, without significant stress/strain gradients, are presented. The free-standing single-crystal Au cylinders are created by focused ion beam machining and are subsequently compressed using a nanoindenter fitted with a diamond flat punch. Compressive stresses and strains, as well as pillar stiffnesses, are determined from the test data. The experiments show that the flow stresses of these pillars increase significantly with decreasing pillar diameter, reaching several GPa for the smallest pillars. These high strengths appear to be controlled by dislocation starvation, which is unique to small crystals. PACS 68.60.Bs An erratum to this article is available at .  相似文献   
6.
Nanoindentation experiments have shown that microstructural inhomogeneities across the surface of gold thin films lead to position-dependent nanoindentation behavior [Phys. Rev. B (2002), to be submitted]. The rationale for such behavior was based on the availability of dislocation sources at the grain boundary for initiating plasticity. In order to verify or refute this theory, a computational approach has been pursued. Here, a simulation study of the initial stages of indentation using the embedded atom method (EAM) is presented. First, the principles of the EAM are given, and a comparison is made between atomistic simulations and continuum models for elastic deformation. Then, the mechanism of dislocation nucleation in single crystalline gold is analyzed, and the effects of elastic anisotropy are considered. Finally, a systematic study of the indentation response in the proximity of a high angle, high sigma (low symmetry) grain boundary is presented; indentation behavior is simulated for varying indenter positions relative to the boundary. The results indicate that high angle grain boundaries are a ready source of dislocations in indentation-induced deformation.  相似文献   
7.
Fusion barriers are calculated in a macroscopic-microscopic model for several cold-fusion heavy-ion reactions leading to heavy and superheavy elements. The results obtained in such a picture are very different from those obtained in a purely macroscopic model. For reactions on 208Pb targets, shell effects in the entrance channel result in fusion-barrier energies at the touching point that are only a few MeV higher than the ground state for compound systems near Z = 110. The entrance-channel fragment-shell effects remain far inside the touching point, almost to configurations only slightly more elongated than the ground-state configuration, where the fusion barrier has risen to about 10 MeV above the ground-state energy. Calculated single-particle level diagrams show that few level crossings occur until the peak in the fusion barrier very close to the ground-state shape is reached, which indicates that dissipation is negligible until very late in the fusion process. Whereas the fission valley in a macroscopic picture is several tens of MeV lower in energy than is the fusion valley, we find in the macroscopic-microscopic picture that the fission valley is only about 5 MeV lower than the fusion valley for cold-fusion reactions leading to compound systems near Z = 110. These results show that no significant “extra-extrapush” energy is needed to bring the system inside the fission saddle point and that the typical reaction energies for maximum cross section in heavy-element synthesis correspond to only a few MeV above the maximum in the fusion barrier.  相似文献   
8.
9.
MeanL-shell x-ray fluorescence yields \((\bar \omega _L )\) have been measured by observingK andL x-ray spectra emitted in the decay of109Cd,145Pm, and153Gd with a high resolution Si(Li) x-ray detector. The results forZ=47, 60, and 63 are as follows: \(\bar \omega _L \) =0.0425±0.0064, 0.131±0.017, and 0.142±0.023, respectively. Additional values of \(\bar \omega _L \) from this laboratory atZ=55, 56, 57, 59, and 65 are also tabulated as are previous experimental values atZ=47, 60, and 63. For comparison, theoretical estimates of \(\bar \omega _L \) were computed using theoreticalL-subshell fluorescence and Coster-Kronig yields, together with subshell vacancy distributions calculated from the literature. The theoretical estimates atZ=47, 60, and 63, based on the subshell calculations of Chen, Crasemann, and Kostroun, agree well with experiment.  相似文献   
10.
The mechanical anisotropy of oriented PVDF sheet is examined using a variety of experimental techniques. The mechanical behavior is similar to that observed previously for low-density polyethylene and nylon and consistent with a parallel lamellar crystalline structure. The s31 compliance is reduced in magnitude by drawing to higher draw ratio, but the reduction in the piezoelectric coefficient d31 is less marked, suggesting that the piezoelectric response cannot be related solely to dimensional changes under stress. Drawing to high draw ratio increases the s33 compliance, and this is further increased by introducing voids. The corresponding d33 piezoelectric coefficient is not changed significantly by drawing to high draw ratio, or by the introduction of voids, again indicating that the piezoelectric behavior relates to factors other than dimensional changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号