首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2021年   1篇
  2008年   3篇
  2007年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The species Dracaena and Sansevieria, that are well-known for different uses in traditional medicines and as indoor ornamental plants with air purifying property, are rich sources of bioactive secondary metabolites. In fact, a wide variety of phytochemical constituents have been isolated so far from about seventeen species. This paper has reviewed the literature of about 180 steroidal saponins, isolated from Dracaena and Sansevieria species, as a basis for further studies. Saponins are among the most characteristic metabolites isolated from the two genera. They show a great variety in structural motifs and a wide range of biological activities, including anti-inflammatory, anti-microbial, anti-proliferative effects and, in most case, remarkable cytotoxic properties.  相似文献   
2.
3.
The macrocycles 1,4,7-tris(carbamoylmethyl)-1,4,7,10-tetrazacyclododecane (1), 1,4,7-tris[(N-ethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane (2), 1,4,7-tris[(N,N-diethyl)carbamoylmethyl]-1,4,7,10-tetraazacyclododecane (3) and their Eu(III) complexes are prepared. Studies using direct Eu(III) excitation luminescence spectroscopy show that all three Eu(III) complexes exhibit only one predominant isomer with two bound waters under neutral to mildly basic conditions (Eu(X)(H(2)O)(2) for X = 1-3). There are no detectable ligand ionizations over the pH range 5.0-8.0 for Eu(3), 5.0-8.5 for Eu(2) or 5.0-9.5 for Eu(1). The three Eu(III) complexes show a linear dependence of second-order rate constants for the cleavage of 4-nitrophenyl-2-hydroxyethylphosphate (HpPNP) on pH in the range 6.5-8.0 for Eu(3), 7.0-8.5 for Eu(2) and 7.0-9.0 for Eu(1). This pH-rate profile is consistent with the Eu(III) complex-substrate complex being converted to the active form by loss of a proton and with Eu(III) water pK(a) values that are higher than 8.0 for Eu(3), 8.5 for Eu(2) and 9.0 for Eu(1). Inhibition studies show that Eu() binds strongly to the dianionic ligand methylphosphate (K(d) = 0.28 mM), and more weakly to diethylphosphate (K(d) = 7.5 mM), consistent with a catalytic role of the Eu(III) complexes in stabilizing the developing negative charge on the phosphorane transition state.  相似文献   
4.
Chitin, a natural abundant polysaccharide, have been investigated as prospected biochemical material due to its several biological advantages. It is insoluble in the most of the organic solvents due to its rigid crystalline structure. However, chitin regenerated hydrogel (RG) has been prepared by using the saturated calcium solvent system under mild conditions. And also, swelling hydrogel (SG) was prepared by using water. In this study, we prepared the suspension of chitinous hydrogel, and applied to fabricated the chitinous compound/gelatin composite sheets. Additionally, N-acetyl D-(+)-glucosamine was added into some composite sheets. We investigated the mechanical properties and growth of NIH/3T3 fibroblast cell for the prepared composite sheet.  相似文献   
5.
T.H. Chan  K.T. Nwe 《Tetrahedron》1975,31(20):2537-2542
2-Phenylisophosphindole 2-oxide (3) was generated as a reactive intermediate by the dehydrobromination of r-1-bromo-t-2-phenylisophosphindoline 2-oxide. The existence of 3 was confirmed by trapping with various dienophiles as the Diels-Alder adducts. The stereochemistry of the [4 + 2]π cycloaddition was found to be stereospecific giving endo products with the phosphoryl group syn to the approaching dienophile. When the dienophile was an alkyne, the cycloadduct decomposed under the reaction conditions to give β-substituted naphthalene as the final product.  相似文献   
6.
7.
Chitin is a polysaccharide found in the outer skeleton of insects, crabs, shrimps, and lobsters and in the internal structures of other invertebrates. Sulfated chitin was prepared by reacting carboxymethyl chitin (CM-chitin) with 2-aminoethane sulfonic acid by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) catalyst. The prepared sulfated chitin was characterized by FTIR, elemental analysis, thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The degree of substitution was found to be 0.98 by elemental analysis. The TGA studies showed that sulfated chitin was less thermal stability than carboxymethyl chitin. This is due to the grafting reaction. The sulfated chitin membranes were prepared from sulfated chitin and then crosslink with glutaradehyde. The biodegradation process was performed in PBS (pH 7.4) containing lysozyme (10 µg/ml) at 37 °C in an incubator. Experimental results from weight loss throughout the study showed that the biospecific degradation occur on the membrane by lysozyme.  相似文献   
8.
Dinuclear europium(III) complexes of the macrocycles 1,3-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-m-xylene (1), 1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene (2), and mononuclear europium(III) complexes of macrocycles 1-methyl-,4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (3), 1-[3'-(N,N-diethylaminomethyl)benzyl]-4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (4), and 1,4,7-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (5) were prepared. Studies using direct excitation ((7)F0 --> (5)D0) europium(III) luminescence spectroscopy show that each Eu(III) center in the mononuclear and dinuclear complexes has two water ligands at pH 7.0, I = 0.10 M (NaNO3) and that there are no water ligand ionizations over the pH range of 7-9. All complexes promote cleavage of the RNA analogue 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) at 25 degrees C (I = 0.10 M (NaNO3), 20 mM buffer). Second-order rate constants for the cleavage of HpPNP by the catalysts increase linearly with pH in the pH range of 7-9. The second-order rate constant for HpPNP cleavage by the dinuclear Eu(III) complex (Eu2(1)) at pH 7 is 200 and 23-fold higher than that of Eu(5) and Eu(3), respectively, but only 7-fold higher than the mononuclear complex with an aryl pendent group, Eu(4). This shows that the macrocycle substituent modulates the efficiency of the Eu(III) catalysts. Eu2(1) promotes cleavage of a dinucleoside, uridylyl-3',5'-uridine (UpU) with a second-order rate constant at pH 7.6 (0.021 M(-1) s(-1)) that is 46-fold higher than that of the mononuclear Eu(5) complex. Methyl phosphate binding to the Eu(III) complexes is energetically most favorable for the best catalysts, and this supports an important role for the catalyst in stabilization of the developing negative charge on the phosphorane transition state. Despite the formation of a bridging phosphate ester between the two Eu(III) centers in Eu2(1) as shown by luminescence spectroscopy, the two metal ion centers are only weakly cooperative in cleavage of RNA and RNA analogues.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号