首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   2篇
化学   43篇
晶体学   1篇
数学   2篇
物理学   14篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1993年   1篇
  1992年   3篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1972年   1篇
排序方式: 共有60条查询结果,搜索用时 13 毫秒
1.
The copper(II/I) complexes of hexathiaether macrocyclic ligand, 1,4,8,11,15,18-hexathiacyclohenicosane ([21]aneS6), were synthesized, and characterized by electrochemical and spectroscopic techniques. Cyclic voltammetric studies indicate that Cu([21]aneS6)2+/+ forms a reversible one-electron redox couple. The electrochemical potential obtained for Cu([21]aneS6)2+/+ (Ef = 0.89 V, against SHE) was found to be the highest potential reported to date for a Cu2+/+ macrocyclic system in aqueous solution. By employing the Nernst equation, we can infer that the practical upper limit for formal potential of Cu(II/I)L systems maybe close to this high value. Stability constant data obtained for these complexes indicate that Cu([21]aneS6)+is 12 orders of magnitude greater in stability than that of Cu([21]aneS6)2+ indicating the favorable nature of this large macrocyclic ligand towards formation of Cu(I) complexes over Cu(II) complexes. Crystal structure of Cu([21]aneS6)+ ( Fig. 2) shows that four sulfurs adjacent to one another are coordinated to Cu+ ion in this complex. Bond angles and distances calculated for the crystal indicate that it is a distorted tetrahedron, a geometry commonly encountered by Cu(I) complexes. This is the first report of synthesis and characterization of a metal coordinated [21]aneS6 complex.  相似文献   
2.
Summary Tritiated uracil and uridine have been prepared simultaneously from a mixture of their respective halogenated analogues (5-bromouracil and5-bromouridine) by halogen-tritium exchange in a one pot preparation, followed by purification. The tritiated products thus obtained have specific activities of 0.962 TBq/mmol and 1.036 TBq/mmol, respectively.  相似文献   
3.
The quinoid-benzenoid-diimine form, (=(C6H4)=N-(C6H4)-N=)x of “polyaniline” shows excellent cathode characteristics including recyclability when used in conjunction with a zinc anode in an aqueous electrolyte of (l. 0M ZnCl2 + 0. 5M NH4Cl) having a pH of ~ 4. The reduced form of this material, (-(C6H4)-N(H)-(C6H4)-N(H)-)x can be used as an anode in conjunction with a Pb02 cathode in an aqueous 0.5M Pb(BF4)2 electrolyte.  相似文献   
4.
Therapeutic efficiency and hemolytic toxicity of primaquine (PQ), the only drug available for radical cure of relapsing vivax malaria are believed to be mediated by its metabolites. However, identification of these metabolites has remained a major challenge apparently due to low quantities and their reactive nature. Drug candidates labeled with stable isotopes afford convenient tools for tracking drug‐derived metabolites in complex matrices by liquid chromatography‐tandem mass spectrometry (LC‐MS‐MS) and filtering for masses with twin peaks attributable to the label. This study was undertaken to identify metabolites of PQ from an in vitro incubation of a 1:1 w/w mixture of 13C6‐PQ/PQ with primary human hepatocytes. Acquity ultra‐performance LC (UHPLC) was integrated with QTOF‐MS to combine the efficiency of separation with high sensitivity, selectivity of detection and accurate mass determination. UHPLC retention time, twin mass peaks with difference of 6 (originating from 13C6‐PQ/PQ), and MS‐MS fragmentation pattern were used for phenotyping. Besides carboxy‐PQ (cPQ), formed by oxidative deamination of PQ to an aldehyde and subsequent oxidation, several other metabolites were identified: including PQ alcohol, predictably generated by oxidative deamination of PQ to an aldehyde and subsequent reduction, its acetate and the alcohol's glucuronide conjugate. Trace amounts of quinone‐imine metabolites of PQ and cPQ were also detected which may be generated by hydroxylation of the PQ/cPQ quinoline ring at the 5‐position and subsequent oxidation. These findings shed additional light on the human hepatic metabolism of PQ, and the method can be applied for identification of reactive PQ metabolites generated in vivo in preclinical and clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
A new 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)-radical scavenging and antiproliferative agents of pyrrolo[1,2-a]quinoline derivatives have been synthesized. An efficient method for the synthesis of 14 novel diversified pyrrolo[1,2-a]quinoline derivatives has been described using 4-(1,3-dioxolan-2-yl)quinoline and different phenacyl bromides in acetone and followed by reacting with different acetylenes in dimethylformamide/K2CO3. The structure of the newly synthesized compounds was determined by infrared, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. The in vitro antioxidant activity revealed that among all the tested compounds 5n exhibited maximum scavenging activity with ABTS. Compound 5b has showed good antiproliferative activity as an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase.  相似文献   
6.
A quantum dynamical equation is constructed as the limit of a sequence of functions (called Semiquantum momentum functions or SQMF). The quantum action variable J is defined as the limit of the sequence of contour integrals of SQMFs such that the quantization condition is J = n, where n is a nonnegative integer for eigenvalues and a noninteger for off eigenvalues. This quantization condition is exact and J is an analytic function of energy. Based on new definitions, an accurate numerical method is developed for obtaining eigenenergies. The method can be applied to both real and PT symmetric complex potentials. The validity and the accuracy of this new method is demonstrated with three illustrations.  相似文献   
7.
Summary Tritiated fluorenone 2 was prepared from 2-iodofluorenone 1 by halogen-tritium exchange. The product had specific activity of 17 Ci/mmol. The product 2(after dilution with unlabeled congener) on reduction with NaBH4gave the corresponding tritiated fluorenol 3.  相似文献   
8.
The clinical formulation of primaquine (PQ) is a mixture of (−)‐(R)‐ and (+)‐(S)‐ primaquine enantiomers which may show different pharmacokinetic and pharmacodynamic properties. To assess the efficacy and toxicity of primaquine enantiomers, a method using LC‐MSD‐TOF has been developed. The enantiomers were well separated using a Chiralcel OD column (250 × 4.6 mm, 10 µm) with a linear gradient of mobile phase consisting of acetonitrile (0.1% formic acid) and aqueous ammonium formate (20 mm ; 0.1% formic acid) adjusted to pH 5.9 at a flow rate of 0.7 mL/min. The method was validated for linearity, precision, accuracy and limits of detection and quantification. The calibration curves were linear with all correlation coefficients being >0.999. The average recoveries of (−)‐(R)‐ and (+)‐(S)‐primaquine and (−)‐(R)‐ and (+)‐(S)‐carboxyprimaquine were 88 and 92%, respectively, in spiked human plasma and 89 and 93% respectively in spiked mouse plasma samples. The RSD of (−)‐(R)‐ and (+)‐(S)‐primaquine and (−)‐(R)‐ and (+)‐(S)‐carboxyprimaquine were 2.15, 1.74, 1.73 and 2.31, respectively, in spiked human plasma and 2.21, 1.09, 1.95 and 1.17% in spiked mouse plasma, respectively. The intra‐day and inter‐day precisions expressed as RSD were lower than 10% in all analyzed quality control levels. The method as reported is suitable for study of the pharmacokinetic and pharmacodynamic properties of the enantiomers of primaquine. The method was successfully applied to study plasma pharmacokinetic profile of enantiomers of primaquine and carboxyprimaquine in mice administered with primaquine in racemic form. The analytical method was found to be linear, accurate, precise and specific. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
9.
A new analytical detector based on a liquid drop resistor–capacitor (RC) filter is described, in which transformed gain vs. frequency curves are used to analyze compounds. This detector can be used to detect either charged or neutral species (that are dielectrically different) which are dissolved in a liquid (e.g., water, alcohol, solvent mixtures, etc.). This device was fabricated by modifying an electrowetting on dielectric (EWOD)-based experimental setup. When a liquid drop is placed on a dielectric surface, the system acts as a RC filter. At a given frequency, gain is a function of conductivity, surface tension, dielectric constant, double-layer thickness of the solid–liquid drop interface, as well as the applied voltage. Since different liquids and solutions have different physical properties, each liquid/solution has a unique curve (peak) in gain vs. frequency plot. This is the basic principle behind the detector. Different amounts of zinc chloride dissolved in water, benzalkonium chloride in water, 1-methylimidazole in water, cetyltrimethyl-ammonium chloride (CTAC) in water, and CTAC dissolved in ethylene glycol solutions were tested with the detector as proof of principle. The device can be used as a stand-alone detector or can easily be coupled with droplet based microfluidic lab-on-a-chip systems such as EWOD-based microfluidic chips.  相似文献   
10.
A new semiclassical method is presented for evaluating zeros of wave functions. In this method, locating zeros of the wave functions of Schrodinger equation is converted to finding roots of a polynomial. The coefficients of this polynomial are evaluated using WKB and semi quantum action variable methods. For certain potentials WKB expressions for moments are obtained exactly. Almost explicit formulae for moments are obtained for the potential V (x) = xN. Examples are given to illustrate both methods. Using semi quantum action variable method, complex zeros of the wave functions of the PT symmetric complex system V(x) = x4 iAx are obtained. These zeros exhibit complex version of interlacing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号