首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   12篇
物理学   5篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Salt-induced protein precipitation and hydrophobic interaction chromatography (HIC) are two widely used methods for protein purification. In this study, salt effects in protein precipitation and HIC were investigated for a broad combination of proteins, salts and HIC resins. Interrelation between the critical thermodynamic salting out parameters in both techniques was equally investigated. Protein precipitation data were obtained by a high-throughput technique employing 96-well microtitre plates and robotic liquid handling technology. For the same protein-salt combinations, isocratic HIC experiments were performed using two or three different commercially available stationary phases-Phenyl Sepharose low sub, Butyl Sepharose and Resource Phenyl. In general, similar salt effects and deviations from the lyotropic series were observed in both separation methods, for example, the reverse Hofmeister effect reported for lysozyme below its isoelectric point and at low salt concentrations. The salting out constant could be expressed in terms of the preferential interaction parameter in protein precipitation, showing that the former is, in effect, the net result of preferential interaction of a protein with water molecules and salt ions in its vicinity. However, no general quantitative interrelation was found between salting out parameters or the number of released water molecules in protein precipitation and HIC. In other words, protein solubility and HIC retention factor could not be quantitatively interrelated, although for some proteins, regular trends were observed across the different resins and salt types.  相似文献   
2.
We report an experimental study in which we compare the self-assembly of 1 mum colloids bridged through hybridization of complementary single-stranded DNA (ssDNA) strands (12 bp) attached to variable-length double-stranded DNA spacers that are grafted to the colloids. We considered three different spacer lengths: long spacers (48 500 bp), intermediate length spacers (7500 bp), and no spacers (in which case the ssDNA strands were directly grafted to the colloids). In all three cases, the same ssDNA pairs were used. However, confocal microscopy revealed that the aggregation behavior is very different. Upon cooling, the colloids coated with short and intermediate length DNAs undergo a phase transition to a dense amorphous phase that undergoes structural arrest shortly after percolation. In contrast, the colloids coated with the longest DNA systematically form finite-sized clusters. We speculate that the difference is due to the fact that very long DNA can easily be stretched by the amount needed to make only intracluster bonds, and in contrast, colloids coated with shorter DNA always contain free binding sites on the outside of a cluster. The grafting density of the DNA decreases strongly with increasing spacer length. This is reflected in a difference in the temperature dependence of the aggregates: for the two systems coated with long DNA, the resulting aggregates were stable against heating, whereas the colloids coated with ssDNA alone would dissociate upon heating.  相似文献   
3.
A sensitive and selective reversed-phase high-performance liquid chromatographic (HPLC) assay has been developed and validated for quantification of total topotecan in human and mouse plasma and in mouse tissue samples. Isocratic separation was achieved on a Zorbax SB-C(18) column and topotecan was monitored fluorimetrically. Two ranges of calibrations curves were used to determine lower levels of topotecan more accurately. Acceptable accuracy and precision was achieved for all matrices. Topotecan was stable upon repeated freeze-thawing for three cycles or storage for 24 h at ambient temperatures in spiked plasma samples and tissue homogenates, except in heart homogenates. In an additional validation experiment in which (14)C-labeled topotecan was administered to mice, the levels of unchanged topotecan were about 80-90% of the total radioactivity in tissue homogenates collected 10 min after drug administration and virtually similar as in plasma samples. However, results in tissue homogenates obtained 4 h post-drug administration indicated substantial metabolism of topotecan. This assay is suitable for studying the pharmacokinetics and tissue distribution of topotecan in mice. Our results demonstrate the importance of including all tissues of interest for pharmacokinetic studies in the validation procedure.  相似文献   
4.
5.
6.
We report a dual-modal device capable of sequential acquisition of Raman spectroscopy (RS) and optical coherence tomography (OCT) along a common optical axis. The device enhances application of both RS and OCT by precisely guiding RS acquisition with OCT images while also compensating for the lack of molecular specificity in OCT with the biochemical specificity of RS. We characterize the system performance and demonstrate the capability to identify structurally ambiguous features within an OCT image with RS in a scattering phantom, guide acquisition of RS from a localized malignancy in ex vivo breast tissue, and perform in vivo tissue analysis of a scab.  相似文献   
7.
Previous dosimetric studies during photodynamic therapy (PDT) of superficial lesions within a cavity such as the nasopharynx, demonstrated significant intra- and interpatient variations in fluence rate build-up as a result of tissue surface re-emitted and reflected photons, which depends on the optical properties. This scattering effect affects the response to PDT. Recently, a meta-tetra(hydroxyphenyl)chlorin-mediated PDT study of malignancies in the paranasal sinuses after salvage surgery was initiated. These geometries are complex in shape, with spatially varying optical properties. Therefore, preplanning and in vivo dosimetry is required to ensure an effective fluence delivered to the tumor. For this purpose, two 3D light distribution models were developed: first, a simple empirical model that directly calculates the fluence rate at the cavity surface using a simple linear function that includes the scatter contribution as function of the light source to surface distance. And second, an analytical model based on Lambert’s cosine law assuming a global diffuse reflectance constant. The models were evaluated by means of three 3D printed optical phantoms and one porcine tissue phantom. Predictive fluence rate distributions of both models are within ± 20% accurate and have the potential to determine the optimal source location and light source output power settings.  相似文献   
8.
The field of electrochemical CO2 conversion is undergoing significant growth in terms of the number of publications and worldwide research groups involved. Despite improvements of the catalytic performance, the complex reaction mechanisms and solution chemistry of CO2 have resulted in a considerable amount of discrepancies between theoretical and experimental studies. A clear identification of the reaction mechanism and the catalytic sites are of key importance in order to allow for a qualitative breakthrough and, from an experimental perspective, calls for the use of in-situ or operando spectroscopic techniques. In-situ infrared spectroscopy can provide information on the nature of intermediate species and products in real time and, in some cases, with relatively high time resolution. In this contribution, we review key theoretical aspects of infrared reflection spectroscopy, followed by considerations of practical implementation. Finally, recent applications to the electrocatalytic reduction of CO2 are reviewed, including challenges associated with the detection of reaction intermediates.  相似文献   
9.

Background  

Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI) studies propose the (posterior) superior temporal cortex (STC) as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent) versus nonmatching (incongruent) multisensory inputs. Here, we used fMR-adaptation (fMR-A) in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs) and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs). We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号