首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   6篇
力学   2篇
物理学   13篇
  2013年   7篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  1993年   1篇
  1992年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有21条查询结果,搜索用时 46 毫秒
1.

Background  

Growth hormone (GH) plays an incompletely understood role in the development of the central nervous system (CNS). In this study, we use transgenic mice expressing a growth hormone antagonist (GHA) to explore the role of GH in regulating postnatal brain, spinal cord and body growth into adulthood. The GHA transgene encodes a protein that inhibits the binding of GH to its receptor, specifically antagonizing the trophic effects of endogenous GH.  相似文献   
2.
Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the α-particles in the spectrum and hence their contribution was estimated using statistical model calculations. The present work indicates that suppression of fusion cross-sections due to the breakup of 7Li may not be significant for 7Li + 12C reaction at energies around the barrier.  相似文献   
3.
4.
Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.  相似文献   
5.
6.

Background  

The 5-HT3 receptor is a member of a neurotransmitter-gated ion channel family which includes nicotinic acetylcholine, GABAA, and glycine receptors. While antibodies specific for the 5-HT3A receptor subunit are plentiful, and have revealed a wealth of structural and functional information, few antisera exist for the detection of 5-HT3B receptor subunits. Here we describe the generation and characterisation of a rabbit polyclonal antiserum that specifically recognises 5-HT3B receptor subunits  相似文献   
7.
The reactivity of the 2,2′-, 2,4′-, 4,4′-dibenzyldiisocyanate (2,2′-, 2,4′-, 4,4′-DBDI) with n-butanol in benzene has been studied. The concentrations of all species were monitored by using high performance liquid chromatography (HPLC). The reactivity of 4,4′-DBDI is similar to that of 4,4′-diphenylmethanediisocyanate (4,4′-MDI). Very strong intramolecular catalytic effects were noticed in the case of 2,2′-DBDI, probably due to the variable molecular geometry. These effects are responsible for the whole reaction pattern. The 2,4′-DBDI NCO ortho and para groups reactivities are different and comparable to that of 2,4-toluylenediisocyanate (2,4-TDI).  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号