首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学   5篇
物理学   18篇
  2013年   2篇
  2007年   1篇
  2006年   2篇
  2004年   2篇
  1996年   2篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
2.
3.
The Feynman path integral Monte Carlo approach has been coupled to the gauge including atomic orbital formalism in order to analyse the absolute magnetic shieldings of the benzene nuclei under the conditions of thermal equilibrium. The Hamiltonian employed in the derivation of ensemble averaged NMR quantities is of the Hartree-Fock type. The basis set used is of 6–31G quality. The spatial delocalization of the atoms leads to a deshielding of both types of benzene nuclei relative to the shieldings experienced at the minimum of the potential energy surface. This deshielding has to be traced back to bond length elongations in thermal equilibrium. The influence of the nuclear fluctuations on the NMR parameters of benzene is quantum driven up to temperatures of 400 K; classical fluctuations are of minor importance in this low-temperature window.  相似文献   
4.
5.
6.
The effective fragment potential (EFP) method for treating solvent effects provides relative energies and structures that are in excellent agreement with the analogous fully quantum [i.e., Hartree-Fock (HF), density functional theory (DFT), and second order perturbation theory (MP2)] results for small water clusters. The ability of the method to predict bulk water properties with a comparable accuracy is assessed by performing EFP molecular dynamics simulations. The resulting radial distribution functions (RDF) suggest that as the underlying quantum method is improved from HF to DFT to MP2, the agreement with the experimental RDF also improves. The MP2-based EFP method yields a RDF that is in excellent agreement with experiment.  相似文献   
7.
The effective fragment potential (EFP) method is an ab initio based polarizable classical method in which the intermolecular interaction parameters are obtained from preparative ab initio calculations on isolated molecules. The polarization energy in the EFP method is modeled with asymmetric anisotropic dipole polarizability tensors located at the centroids of localized bond and lone pair orbitals of the molecules. Analytic expressions for the translational and rotational gradients (forces and torques) of the EFP polarization energy have been derived and implemented. Periodic boundary conditions (the minimum image convention) and switching functions have also been implemented for the polarization energy, as well as for other EFP interaction terms. With these improvements, molecular dynamics simulations can be performed with the EFP method for various chemical systems.  相似文献   
8.
The Effective Fragment Potential (EFP) method for solvation decreases the cost of a fully quantum mechanical calculation by dividing a chemical system into an ab initio region that contains the solute plus some number of solvent molecules, if desired, and an "effective fragment" region that contains the remaining solvent molecules. Interactions introduced with this fragment region (for example, Coulomb and polarization interactions) are added as one-electron terms to the total system Hamiltonian. As larger systems and dynamics are just starting to be studied with the EFP method, more needs to be done to decrease the calculation time of the method. This article considers parallelization of both the EFP fragment-fragment and mixed quantum mechanics (QM)-EFP interaction energy and gradient computation within the GAMESS suite of programs. The iteratively self-consistent polarization term is treated with a new algorithm that makes use of nonblocking communication to obtain better scalability. Results show that reasonable speedup is achieved with a variety of sizes of water clusters and number of processors.  相似文献   
9.
A systematic method for approximating the ab initio electronic energy of molecules from the energies of molecular fragments has been adapted to estimate the total electronic energy of crystal lattices. The fragmentation method can be employed with any ab initio electronic structure method and allows optimization of the crystal structure based on ab initio gradients. The method is demonstrated on SiO(2) polymorphs using the Hartree-Fock approximation, second order Moller-Plesset perturbation theory, and the quadratic configuration interaction method with single and double excitations and triple excitations added perturbatively .  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号