首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   1篇
力学   4篇
数学   1篇
物理学   2篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2004年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 359 毫秒
1
1.
In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated first from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and again get promising results. The thermally induced errors can be estimated with 1-2 microm accuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems.  相似文献   
2.
It is well known that, for stepsize sufficiently small, compactattractors of ordinary differential equations persist underdiscretization. The present paper describes the structure ofthe discrete-time dynamical system obtained via discretizationon A(Mh)\Mh where Mh is the approximate attractor and A(Mh)is its domain of attraction. The existence of a smooth embeddinginto a continuous-time parallelizable flow is proved. The constructioncan be used to define sections for discretizations and can beinterpreted as a justification of the method of modified equations.  相似文献   
3.
The turbine technology for low head application in the micro hydro range has been vastly neglected despite niche available in scattered regions of valley flows as well as in wastewater canals and other energy recovery schemes, where the available head does not exceed 2 meters. The goal of this study is to develop hydraulically optimized propeller turbines for the micro hydro range with a particular focus on ease of manufacture.This paper presents a wide range of geometrical optimization steps carried out on a propeller runner, whose blades have been designed using the free vortex theory, and operating with a gross head from 1.5 to 2 m and discharge of approximately 75 l/s. It further illustrates 3 stages of geometrical modifications carried out on the runner with an objective of optimizing the runner performance. These modifications comprised of changes to the tip angles (both at the runner inlet and exit) as well as the hub angles (at the runner inlet) of the runner blades.The paper also presents an interesting theoretical methodology to analyze the effects of each optimization stage. This method looks at the relative changes to shaft power and discharge at constant head and speed and gives wonderful insight as to how the internal parameters like Euler shaft work and runner hydraulic losses are behaving with respect to each optimization stage.It was found that the performance of the runner was very sensitive to changes to exit tip angle. At two levels of modification, the discharge increased in the range of 15–30%, while shaft power increased in the range of 12–45%, thus influencing the efficiency characteristics.The results of the runner inlet tip modification were very interesting in that a very significant rise of turbine efficiency was recorded from 55% to 74% at the best efficiency point, which was caused by a reduced discharge consumption as well as a higher power generation.It was also found that the optimization study on a propeller runner has reasonably validated the estimates of the free vortex theory despite small deviations. The final runner configuration demonstrated a maximum efficiency of 74% (±1.8%), which is very encouraging from the perspectives of micro hydro application.The paper concludes with recommendations of a series of optimization steps to increase the efficiency of the runner. It also recommends the attempt of Computational Fluid Dynamics both as a validation and optimization tool for future research on propeller runners.  相似文献   
4.
The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement.In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency.The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume.The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding effects over wide range of pump shapes including axial pumps.  相似文献   
5.
Alignment of the L 3 ? (J = 3 / 2) subshell vacancy states in the Au, Bi, Th and U elements following photoinisation have been investigated through angular distribution measurements of subsequently emitted L 3 subshell X-rays. The 59.54 keV unpolarised γ-rays from the 241Am radioactive point-source were used to ionize the target and the subsequently emitted L X-rays were measured using an HPGe detector. The improved experimental procedure along with correct evaluation scheme permits straight-forward method for investigating anisotropy in photo-excited L X-ray emission. The efficiency of the detector and the absorption correction for the emitted L X-rays in the target remain fairly constant as the target-detector assemblage remains undisturbed in the present measurements at various angles. Isotropically emitted L 1 subshell (J = 1 / 2) X-rays measured simultaneously were used to normalize the L X-ray spectra taken at different emission angles. The present measurements clearly support small theoretical predicted values of the alignment parameter; however, it is difficult to infer regarding the predicted anisotropic trends. The angular distribution measurements for the L 3 subshell X-ray emission were also performed by placing the target in magnetic field  ~ 0.6 T. The earlier reported large anisotropy in angular distribution of the emitted L 3 subshell X-rays and significant effect of external magnetic field on the angular distribution are ruled out.  相似文献   
6.
An experimental and theoretical investigation of the dissociative electron attachment process in nitric oxide is presented. Measurements using the recently developed ion momentum imaging conclusively show the presence of two resonance features in the O(-) channel. These are found to dissociate to give N atoms in the (2)D and (2)P excited states respectively, thus settling the controversies regarding the possible dissociation limits of this process. Though the angular distribution of O(-) shows the resonances contributing to these dissociations are of Π symmetry and a mixture of Π and Σ or Δ symmetry respectively, our calculations using R-matrix theory show no direct electron attachment channel leading to O(-) through these resonances, as all the allowed resonances below 10 eV decay to either O + N(-) or O(-) + N((4)S) channels. We propose that indirect mechanisms through curve crossings lead to the experimentally observed results.  相似文献   
7.
A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized.The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity.The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model’s limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects.  相似文献   
8.
The paper presents an experimentally validated optimization routine for the turbine-mode operation of radial flow centrifugal pumps. The optimization routine outlined here is designed to be used with prediction (predicting turbine mode characteristics of a pump) and selection (selecting the most appropriate pump for turbine-mode operation) models. The optimization routine improves upon previous uncertainties in prediction, especially in the low specific speed range.The optimization routine is evaluated experimentally for three pumps with specific speeds of 18.2 rpm, 19.7 rpm and 44.7 rpm, and a significant improvement in the accuracy of the turbine predictions with the errors for all the three pumps falling within the ±4% acceptance bands in the full load operating region is found.It is also shown how the optimization routine validates an approach to selection and prediction based on model experiments and classical principles of applied turbomachinery (specific speed-specific diameter or the Cordier/Balje plots). Such an approach is shown to be the most economic in terms of pump mode input variables.The paper recommends the extensive use of the optimization routine in micro hydro and other energy recovery projects involving pumps as turbines and the creation of a database of accurate field results that can be used to improve the routine further.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号