首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   5篇
化学   75篇
力学   5篇
数学   12篇
物理学   9篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   10篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
Two phosphorus‐containing acrylate monomers were synthesized from the reaction of ethyl α‐chloromethyl acrylate and t‐butyl α‐bromomethyl acrylate with triethyl phosphite. The selective hydrolysis of the ethyl ester monomer with trimethylsilyl bromide (TMSBr) gave a phosphonic acid monomer. The attempted bulk polymerizations of the monomers at 57–60 °C with 2,2′‐azobisisobutyronitrile (AIBN) were unsuccessful; however, the monomers were copolymerized with methyl methacrylate (MMA) in bulk at 60 °C with AIBN. The resulting copolymers produced chars on burning, showing potential as flame‐retardant materials. Additionally, α‐(chloromethyl)acryloyl chloride (CMAC) was reacted with diethyl (hydroxymethyl)phosphonate to obtain a new monomer with identical ester and ether moieties. This monomer was hydrolyzed with TMSBr, homopolymerized, and copolymerized with MMA. The thermal stabilities of the copolymers increased with increasing amounts of the phosphonate monomer in the copolymers. A new route to highly reactive phosphorus‐containing acrylate monomers was developed. A new derivative of CMAC with mixed ester and ether groups was synthesized by substitution, first with diethyl (hydroxymethyl)phosphonate and then with sodium acetate. This monomer showed the highest reactivity and gave a crosslinked polymer. The incorporation of an ester group increased the rate of polymerization. The relative reactivities of the synthesized monomers in photopolymerizations were determined and compared with those of the other phosphorous‐containing acrylate monomers. Changing the monomer structure allowed control of the polymerization reactivity so that new phosphorus‐containing polymers with desirable properties could be obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2207–2217, 2003  相似文献   
2.
New ester derivatives of ethyl α-hydroxymethylacrylate were synthesized using acid chlorides (traditional solution reactions), sodium salts of acids (with phase transfer catalysis), and trifluoroacetic anhydride (trifluoroacetate). The interfacial process gave high yields of clean products under very mild conditions. Derivatives obtained include the formate, acetate, hexanoate, stearate, benzoate, trifluoroacetate, and adamantanoate. Bulk polymerizations with 2,2′-azobis (isobutyronitrile) gave high molecular weight polymers with intrinsic viscosities of over 2 dL/g and molecular weights of several million [based on size-exclusion chromatography (SEC) comparison to polystyrene standards]. These high molecular weights were the result of autoacceleration in the bulk as shown by monitoring molecular weight with respect to conversion. Solution polymerization in benzene gave more typical polymer, e.g., the acetate derivative showed an SEC molecular weight of 52,000. Glass transition temperatures for the n-alkyl esters decreased from the formate (77°C) to the hexanoate (15°C); the stearate showed a side-chain melting point of 40°C but no Tg. Glass transitions were observed for the trifluoroacetate, benzoate, and adamantanoate polymers at 69, 130, and 214°C, respectively. Solution 13C-NMR showed evidence of tacticity information for the formate and acetate derivatives with appaent preference for syndiotactic polymer formation similar to that of methyl methacrylate. FTIR and solid-state 13C-NMR analysis gave spectra with functional group peaks and chemical shift values expected based on composition. The stearate monomer and polymer gave solid-state 13C chemical shifts of 34 and 33 ppm, respectively, for the central CH2 units consistent with monoclinic and orthorhombic crystal packing. © 1994 John Wiley & Sons, Inc.  相似文献   
3.
Infrared spectral studies of β-choline chloride at 95°C clearly demonstrate the presence of O---H … Cl hydrogen bonding. This observation contradicts an earlier conclusion, based on X-ray structural studies, that such hydrogen bonding could not occur in this high-temperature form of choline chloride. A moderate reinterpretation of the X-ray data may reconcile these contradictory conclusions. Unlike -choline chloride, β-choline chloride does not show C---H … Cl hydrogen bonding. It is possible that loss of C---H … Cl hydrogen bonding is a factor in the marked difference in radiation sensitivity of the - and β-forms.  相似文献   
4.
Two new bismethacrylamide ( 1 , 2 ) and two new methacrylamide ( 3 , 4 ) dental monomers were synthesized. In each group, one monomer contains a bisphosphonate group, the other a bisphosphonic acid group. Monomer 1 and 3 were synthesized by amidation of 2‐(2‐chlorocarbonyl‐allyloxymethyl)‐acryloylchloride and methacryloyl chloride with tetraethyl aminomethyl‐bis(phosphonate) and converted to the bisphosphonic acid monomers 2 and 4 by hydrolysis with trimethylsilyl bromide. Monomer 1 (m.p.: 71–72 °C), monomer 3 ( 33–34 °C), and monomer 4 (no m.p.) were obtained as white solids and monomer 2 a viscous liquid, soluble in water. Homopolymerization of 1 gave crosslinked polymers, indicating its low cyclization tendency. The photopolymerization studies indicated that its copolymerizability with 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloyloxy propyloxy) phenyl] propane and 2‐hydroxyethyl methacrylate (HEMA) without changing their rates and conversions significantly means that it could be used as a biocompatible crosslinker. Although monomer 2 showed low polymerizability, because of its good performance in terms of solubility, hydrolytic stability, hydroxyapatite interaction, acidity, and copolymerizability with HEMA, it shows potential to be used in self‐etching dental adhesives. The thermal polymerization of 3 resulted in soluble polymers and evaluation of monomer 4 in terms of solubility, acidity, and copolymerizability with HEMA indicated its potential as an adhesive monomer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
5.
Several new benzoate ester derivatives of ethyl α-hydroxymethylacrylate were synthesized using phase transfer catalysis and found to display unexpectedly rapid photopolymerization; i.e., from 2 to 8 times faster than MMA. New derivatives described here include the 4-fluoro-, 4-trifluoromethyl-, 4-methyl-, 2-hydroxy-, 4-nitro-, 4-methoxy-, 4-cyano-, and 3,4,5-trimethoxybenzoate esters along with the parent benzoate ester. Relative reactivities of these monomers in photopolymerizations were compared with those of the nonaromatic formate, acetate, hexanoate, and stearate derivatives. Reactivities of the nonaromatic ester derivatives increased with the length of the side chain while for the more reactive aromatic esters, rates increased in the order 4-methyl-, 4-fluoro- and benzoate < 4-trifluoromethyl- and 2-hydroxy- < 4-cyano- < 4-methoxy- < 3,4,5-trimethoxybenzoate. Tgs of the benzoate polymers ranged from 125°C for the 4-fluoro to 163°C for the 4-cyanobenzoate while those of the alkyl ester derivatives ranged from 15 to 78°C. Number average molecular weights of photoinitiated polymers (ca 10,000–20,000) were lower than those found for bulk and solution polymers (20,000—708,000) consistent with higher radical concentrations from photoinitiation. These materials greatly expand the number of candidates available for rapid photocure in thin film and coating applications, especially because their physical properties are those of linear rather than highly crosslinked structures formed from multifunctional systems. © 1996 John Wiley & Sons, Inc.  相似文献   
6.
A series of alkyl α‐hydroxymethacrylate derivatives with various secondary functionalities (ether, ester, carbonate, and carbamate) and terminal groups (alkyl, cyano, oxetane, cyclic carbonate, phenyl and morpholine) were synthesized to investigate the effect of intermolecular interactions, H‐bonding, π–π interactions, and dipole moment on monomer reactivity. All of the monomers except one ester and one ether derivative are novel. The polymerization rates, determined by using photo‐DSC, showed the average trend (aromatic carbamate > hydroxyl > ester > carbonate ~ aliphatic carbamate ~ ether), with several exceptions due to the differences in terminal groups. There is a correlation between the chemical shift differences of the double bond carbons, the calculated dipole moments, and the reactivities only for nonhydrogen bonded monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
7.
Incorporation of bisphosphonate/bisphosphonic acid groups in dental monomer structures should increase interaction of these monomers with dental tissue as these groups have strong affinity for hydroxyapatite. Therefore, new urea dimethacrylates functionalized with bisphosphonate (1a, 1b) and bisphosphonic acid (2a, 2b) groups are synthesized and evaluated for dental applications. Monomers 1a and 1b are synthesized from 2‐isocyanatoethyl methacrylate (IEM) and two bisphosphonated amines (BPA1 and BPA2), prepared as reported elsewhere. Selective dealkylation of the bisphosphonate ester groups of 1a and 1b using trimethylsilyl bromide (TMSBr) gives monomers (2a and 2b) with bisphosphonic acid functionality. X‐ray diffractometer (XRD), Raman spectroscopy, and X‐ray photoelectron spectroscopy (XPS) analyses of monomer‐treated HAP particles show that 2a induces formation of stable monomer‐calcium salts, similar to 10‐methacryloyloxydecyl dihydrogen phosphate (MDP), with higher chemical interaction than 2b. The photopolymerization studies indicate good copolymerizability with commercial dental monomers. In vitro studies on NIH 3T3 mouse embryonic fibroblast cells have clearly shown that the tested monomers (1b and 2b) are not toxic according to the MTT standards. All these properties make these monomers suitable as biocompatible cross‐linkers/adhesives for dental applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3195–3204  相似文献   
8.
Cellulose has been used as a raw material for the manufacture of membranes and fibers for many years. This review gives the background of the most recent methods of treating or dissolving cellulose, and its derivatives to form polymer films or membranes for a variety of applications. Indeed, some potential applications of bacterial cellulose, nanofibrillar cellulose (NFC) for films showing enhanced barrier characteristics are reviewed as well as the utilization of cellulose nanonocrystals (CNC) for production of highly oriented super strong films or thin films is discussed. Because of the success of the Lyocell process as well as the amine/metal thiocyanate solvent blends of cellulose and other polysaccharides like starch, chitosan, and other natural polymers. Consequently, the use of cellulose (or its derivatives) and another polysaccharide dissolved as a blend is also elaborated. It is our hope that the reader will want to follow up and investigate these new systems and use them to develop end use materials for all sorts of applications, from medical to water filtration, or electrogels for use in batteries.  相似文献   
9.
A series of copolymers of N,N‐dialkyl‐N‐2‐(methoxycarbonyl)allyl allyl ammonium chloride, N,N‐dialkyl‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride, and N,N‐dialkyl‐N‐2‐(t‐butoxycarbonyl)allyl allyl ammonium bromide with diallyldimethylammonium chloride (DADMAC) were prepared in water at 60 °C with 2,2′‐azo‐bis(2‐amidinopropane)dihydrochloride. A strong effect of ester substituents on cyclopolymerization was observed. The methyl and ethyl ester monomers showed high cyclization efficiencies during homopolymerizations and copolymerizations. Unexpectedly, the t‐butyl ester derivatives showed high crosslinking tendencies. Water‐soluble copolymers were obtained only with a decrease in the molar fraction of t‐butyl ester monomer below 30%. Relative reactivities of the allyl‐acrylate monomers in photopolymerizations were compared with the relative reactivity of DADMAC. Allyl‐acrylate monomers were much more reactive than DADMAC; the photopolymerization rate decreased in the following order: N,N‐morpholine‐N‐2‐(t‐butoxycarbonyl)allyl allyl ammonium bromide > N,N‐piperidyl‐N‐2‐(t‐butoxycarbonyl)allyl allyl ammonium bromide > N,N‐dibutyl‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride > N,N‐piperidyl‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride ∼ N,N‐morpholine‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride ∼ N,N‐piperidyl‐N‐2‐(methoxycarbonyl)allyl allyl ammonium chloride > N‐methyl‐N‐butyl‐N‐2‐(ethoxycarbonyl)allyl allyl ammonium chloride. Intrinsic viscosities of the polymers measured in 0.09 M NaCl ranged from 1.06 to 3.20 dL/g. The highest viscosities were obtained for copolymers of the t‐butyl ester monomers with piperidine and morpholine substituents. The copolymer of the t‐butyl ester with piperidine substituent and DADMAC was hydrolyzed in acid to give a polymer with zwitterionic character. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 640–649, 2001  相似文献   
10.
Novel allyl‐acrylate quaternary ammonium salts were synthesized using two different methods. In the first (method 1), N,N‐dimethyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium bromide and N,N‐dimethyl‐N‐2‐(tert‐butoxycarbonyl)allyl allylammonium bromide were formed by reacting tertiary amines with allyl bromide. The second (method 2) involved reacting N,N‐dialkyl‐N‐allylamine with either ethyl α‐chloromethyl acrylate (ECMA) or tert‐butyl α‐bromomethyl acrylate (TBBMA). The monomers obtained with the method 2 were N,N‐diethyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium chloride, N,N‐diethyl‐N‐2‐(tert‐butoxycarbonyl)allyl allylammonium bromide, and N,N‐piperidyl‐N‐2‐(ethoxycarbonyl)allyl allylammonium chloride. Higher purity monomers were obtained with the method 2. Solution polymerizations with 2,2′‐azobis(2‐amidinopropane) dihydrochloride (V‐50) in water at 60–70°C gave soluble cyclopolymers which showed polyelectrolyte behavior in pure water. Intrinsic viscosities measured in 0.09M NaCl ranged from 0.45 to 2.45 dL/g. 1H‐ and 13C‐NMR spectra indicated high cyclization efficiencies. The ester groups of the tert‐butyl polymer were hydrolyzed completely in acid to give a polymer with zwitterionic character. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 901–907, 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号