首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
化学   37篇
数学   2篇
物理学   9篇
  2018年   1篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2006年   7篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
Mesomorphic behavior of the novel long-chain alkyl polyglucoside emulsifier comprising arachidyl alcohol (C20), behenyl alcohol (C22), and arachidyl glucoside was investigated in order to determine the prevalent stabilization mechanism and moisturizing capacity of emulsion systems based on it. For this to be accomplished thermoanalytical methods (differential scanning calorimetry and thermogravimetric analysis) coupled with microscopy, rheological, X-ray diffraction methods and a short-term in vivo study of skin hydration level were performed. Obtained results have proved that C20/C22 alkyl polyglucoside mixed emulsifier is able to provide the synergism between the two main types of lamellar phases, the liquid-crystalline (Lα), and the gel crystalline (Lβ) one, building the emulsion systems of different stability and performance. Formation of lamellar structures influenced for more than one half of water within the system to be entrapped. Conducted investigation of hydration potential in real-time conditions provided valuable information on the investigated emulsion vehicles’ moisturizing potential as well as their contribution to the skin barrier improvement. Therefore, it could be expected that emulsions based on this alkyl polyglucoside emulsifier could influence the delivery of active ingredients of both the lipophilic and hydrophilic type. The employment of thermoanalytical methods in our work suggests the possibility for thermal methods to be used more frequently in the characterization of both the novel raw materials and the belonging emulsion systems.  相似文献   
2.
The mechanisms of the carboxylations of lithium, potassium, rubidium, and cesium phenoxides are investigated by means of the DFT method with the LANL2DZ basis set. It is shown that the reactions of all alkali metal phenoxides with carbon dioxide occur via very similar reaction mechanisms. The reactions can proceed in the ortho and para positions. The exception is lithium phenoxide which yields only salicylic acid in the Kolbe-Schmitt reaction. It is found that the yield of the para substituted product increases with increasing the ionic radius of the alkali metal used. An explanation for this experimental and theoretical observation is proposed.  相似文献   
3.
Li C  Huang L  Duric N  Zhang H  Rowe C 《Ultrasonics》2009,49(1):61-72
Objective and motivationTime-of-flight (TOF) tomography used by a clinical ultrasound tomography device can efficiently and reliably produce sound-speed images of the breast for cancer diagnosis. Accurate picking of TOFs of transmitted ultrasound signals is extremely important to ensure high-resolution and high-quality ultrasound sound-speed tomograms. Since manually picking is time-consuming for large datasets, we developed an improved automatic TOF picker based on the Akaike information criterion (AIC), as described in this paper.MethodsWe make use of an approach termed multi-model inference (model averaging), based on the calculated AIC values, to improve the accuracy of TOF picks. By using multi-model inference, our picking method incorporates all the information near the TOF of ultrasound signals. Median filtering and reciprocal pair comparison are also incorporated in our AIC picker to effectively remove outliers.ResultsWe validate our AIC picker using synthetic ultrasound waveforms, and demonstrate that our automatic TOF picker can accurately pick TOFs in the presence of random noise with absolute amplitudes up to 80% of the maximum absolute signal amplitude. We apply the new method to 1160 in vivo breast ultrasound waveforms, and compare the picked TOFs with manual picks and amplitude threshold picks. The mean value and standard deviation between our TOF picker and manual picking are 0.4 μs and 0.29 μs, while for amplitude threshold picker the values are 1.02 μs and 0.9 μs, respectively. Tomograms for in vivo breast data with high signal-to-noise ratio (SNR) (∼25 dB) and low SNR (∼18 dB) clearly demonstrate that our AIC picker is much less sensitive to the SNRs of the data, compared to the amplitude threshold picker.Discussion and conclusionsThe picking routine developed here is aimed at determining reliable quantitative values, necessary for adding diagnostic information to our clinical ultrasound tomography device - CURE. It has been successfully adopted into CURE, and allows us to generate such values reliably. We demonstrate that in vivo sound-speed tomograms with our TOF picks significantly improve the reconstruction accuracy and reduce image artifacts.  相似文献   
4.
This paper describes a new polar-embedded stationary phase that contains an internal sulfonamide functional group coupled with an ether linkage. The synthesis involves functionalization of spherical silica particles with ligands prepared in a multi-step synthesis. The resulting material contains 16.5% carbon, corresponding to a ligand coverage of 2.4mumol/m(2). Chromatographic evaluations indicates that the new stationary phase exhibits lower polarity than any other polar-embedded packings investigated, with additional features such as low silanol activity, excellent compatibility with 100% aqueous mobile phases, higher shape selectivity for polycyclic aromatic hydrocarbons, and strong affinity to nitro-containing compounds.  相似文献   
5.
6.
Palladium(II) complexes promote hydrolysis of natural and synthetic oligopeptides with unprecedented regioselectivity; the only cleavage site is the second peptide bond upstream from a methionine or a histidine side chain, that is, the bond involving the amino group of the residue that precedes this side chain. We investigate this regioselectivity with four N-acetylated peptides as substrates: neurotransmitter methionine enkephalin (Ac-Tyr-Gly-Gly-Phe-Met) and synthetic peptides termed Met-peptide (Ac-Ala-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala), His-peptide (Ac-Val-Lys-Gly-Gly-His-Ala-Lys-Tyr-Gly-Gly-Met(OX)-Ala-Ala-Arg-Ala), in which a Met is oxidized to sulfone, and HisMet-peptide (Ac-Val-Lys-Gly-Gly-His-Ala-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala). While maintaining protein-like properties, these substrates are suitable for quantitative study since their coordination to Pd(II) ion can be determined (by NMR spectroscopy), and the cleavage fragments can be separated (by HPLC methods) and identified (by MALDI mass spectrometry). The only peptide bonds cleaved were the Gly3-Phe4 bond in methionine enkephalin, Gly4-Gly5 bond in Met-peptide, Gly3-Gly4 in His-peptide, and Gly3-Gly4 and Gly9-Gly10 bonds in HisMet-peptide. We explain this consistent regioselectivity of cleavage by studying the modes of Met-peptide coordination to the Pd(II) ion in [Pd(H(2)O)(4)](2+) complex. In acidic solution, the rapid attachment of the Pd(II) complex to the methionine side chain is followed by the interaction of the Pd(II) ion with the peptide backbone upstream from the anchor. In the hydrolytically active complex, Met-peptide is coordinated to Pd(II) ion as a bidentate ligand - via sulfur atom in the methionine side chain and the first peptide nitrogen upstream from this anchor - so that the Pd(II) complex approaches the scissile peptide bond. Because the increased acidity favors this hydrolytically active complex, the rate of cleavage guided by either histidine or methionine anchor increased as pH was lowered from 4.5 to 0.5. The unwanted additional cleavage of the first peptide bond upstream from the anchor is suppressed if pH is kept above 1.2. Four Pd(II) complexes cleave Met-peptide with the same regioselectivity but at somewhat different rates. Complexes in which Pd(II) ion carries labile ligands, such as [Pd(H(2)O)(4)](2+) and [Pd(NH(3))(4)](2+), are more reactive than those containing anionic ligands, such as [PdCl(4)](2)(-), or a bidentate ligand, such as cis-[Pd(en)(H(2)O)(2)](2+). When both methionine and histidine residues are present in the same substrate, as in HisMet-peptide, 1 molar equivalent of the Pd(II) complex distributes itself evenly at both anchors and provides partial cleavage, whereas 2 molar equivalents of the promoter completely cleave the second peptide bond upstream from each of the anchors. The results of this study bode well for growing use of palladium(II) reagents in biochemical and bioanalytical practice.  相似文献   
7.
Freezing point temperatures for binary mixtures containing phenylazophenol (PAP) with p-(p-methoxyphenylazo)phenol (MOPAP), p-(p-ethylphenylazo)phenol (EPAP) and p-(p-ethoxyphenylazo)phenol (EOPAP) have been experimentally determined using differential scanning calorimetry. Enthalpies and entropies of fusion for the four phenylazophenol derivatives were also measured. Results of these measurements indicate that the three binary systems exhibit only slight deviations from ideality at temperatures between the melting points of the pure components. Deviations become more pronounced in the PAP+EOPAP system as the temperature decreases below the melting pont of the ethoxy-derivative.  相似文献   
8.
Silica monoliths coated with functionalised latex particles have been prepared for use in monolithic ion-exchange capillary electrochromatography (IE-CEC) for the separation of inorganic anions. The ion-exchange monoliths were prepared using 70 nm quaternary ammonium, anion-exchange latex particles, which were bound electrostatically to a monolithic silica skeleton synthesised in a fused silica capillary. The resulting stationary phases were characterised in terms of their chromatographic performance and capacity. The capacity of a 50 microm diameter 25 cm latex-coated silica monolith was found to be 0.342 nanoequivalents and 80,000 theoretical plates per column were typically achieved for weakly retained anions, with lower efficiency being observed for analytes exhibiting strong ion-exchange interaction with the stationary phase. The electroosmotic flow (EOF) was reversed after the latex-coating was applied (-25.96 m2 V(-1) s(-1), relative standard deviation (RSD) 2.8%) and resulted in anions being separated in the co-EOF mode. Ion-exchange interactions between the analytes and the stationary phase were manipulated by varying the ion-exchange selectivity coefficient and the concentration of a competing ion (phosphate or perchlorate) present in the electrolyte. Large concentrations of competing ion (greater than 1M phosphate or 200 mM perchlorate) were required to completely suppress ion-exchange interactions, which highlighted the significant retention effects that could be achieved using monolithic columns compared to open tubular columns, without the problems associated with particle-packed columns. The latex-coated silica monoliths were easily produced in bulk quantities and performed reproducibly in acidic electrolytes. The high permeability and beneficial phase ratio makes these columns ideal for micro-LC and preconcentration applications.  相似文献   
9.
There are several stages of the LC-SPE-NMR process that should be monitored closely to ensure an efficient isolation and concentration of the target analyte, for instance analyte break-through and compound transfer from the LC-SPE to the NMR probe. In this study, analyte break-through monitoring was performed with a UV detector and a mass spectrometer placed after the SPE unit. Easy break-through was a problem when attempting multiple trapping of various compounds using C18 SPE cartridges with the original commercial system. However, on lowering the flow rate over the SPE system and using SPE cartridges packed with porous carbon, the number of trappings possible increased five-fold. To increase control over the on-line SPE-NMR transfer, a gradient pump-UV system was used to elute compounds trapped on an SPE to an NMR probe. The analyte band was placed in the active volume of the probe by a stop-flow mechanism. The modified LC-SPE system was also coupled with off-line NMR analysis for determination of a degradation product of the insecticide monuron, present in the low ppm range.  相似文献   
10.
This study shows, for the first time, the advantages of combining two transition-metal complexes as selective proteolytic reagents. In this procedure, cis-[Pt(en)(H(2)O)(2)](2+) is followed by [Pd(H(2)O)(4)](2+). In the peptide AcAla-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala, the Pt(II) reagent cleaves the Met6-Ala7 peptide bond, whereas the Pd(II) reagent cleaves the Gly4-Gly5 bond. In the peptide AcVal-Lys-Gly-Gly-His-Ala-Lys-Tyr-Gly-Gly-Met-Ala-Ala-Arg-Ala, the Pt(II) reagent cleaves the Met11-Ala12 peptide bond, whereas the Pd(II) reagent cleaves the Gly3-Gly4 bond. All cleavage reactions are regioselective and complete at pH 2.0 and 60 degrees C. Each metal ion binds to an anchoring side chain and then, as a Lewis acid, activates a proximal peptide bond toward hydrolysis by the solvent water. The selectivity in cleavage is a consequence of the selectivity in this initial anchoring. Both Pt(II) and Pd(II) reagents bind to the methionine side chain, whereas only the Pd(II) reagent binds to the histidine side chain under the reaction conditions. Consequently, only methionine residues direct the cleavage by the Pt(II) reagent, whereas both methionine and histidine residues direct the cleavage by the Pd(II) reagent. The Pt(II) reagent cleaves the first bond downstream from the anchor, i.e., the Met-Z bond. The Pd(II) reagent cleaves the second bond upstream from the anchor, i.e., the X-Y bond in the X-Y-Met-Z and in the X-Y-His-Z segments. The diethylenetriamine complex [Pt(dien)(H(2)O)](2+) cannot promote cleavage. Its prior binding to the Met11 residue in the second peptide prevents the Pd(II) reagents from binding to Met11 and cleaving the Gly9-Gly10 bond and directs the cleavage by the Pd(II) reagent exclusively at the Gly3-Gly4 bond. Our new method was tested on equine myoglobin, which contains 2 methionine residues and 11 histidine residues. The complete methionine-directed cleavage of the Met55-Lys56 and Met131-Thr132 bonds by the Pt(II) reagent produced three fragments, suitable for various biochemical applications because they are relatively long and contain amino and carboxylic terminal groups. The deliberately incomplete histidine-directed cleavage of the long fragments 1.55 and 56.131 at many sites by the Pd(II) reagent produced numerous short fragments, suitable for protein identification by mass spectrometry. The ability of combined Pt(II) and Pd(II) complexes to cleave proteins with explicable and adjustable selectivity and with good yields bodes well for their greater use in biochemical and bioanalytical practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号