首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2021年   1篇
  2012年   1篇
  2010年   1篇
  2008年   3篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
Of the most common cubic intermetallic structure types, several (MgCu(2), Cu(5)Zn(8), Ti(2)Ni, and alpha-Mn) have superstructures with unusual symmetry properties. These superstructures (Be(5)Au, Li(21)Si(5), Sm(11)Cd(45), and Mg(44)Ir(7)) have the unusual property of pairs of perpendicular pseudo fivefold axes, most apparent in their X-ray diffraction patterns. The current work shows that an 8D to 3D projection method cleanly describes most (and in one case, all) of the atomic positions in the four superstructures mentioned above. This type of projection, which maps the E(8) lattice (a mathematically simple 8D crystal) into 3D space, combines the desired higher dimensional point group's perpendicular fivefold rotations with 3D translational symmetry-exactly what we see in the experimental crystal structures. The projection method successfully accounts for all heavy atom positions in the four superstructures, and at least 60-70 % of the light atom positions. The results suggest that all of these structures, previously known to be connected only by qualitative similarities in their atomic "clusters", are approximants of a single, as-yet unknown, class of quasicrystal.  相似文献   
2.
The theory for modeling vibronic interactions in bichromophores was introduced in sixties by Witkowski and Moffitt [J. Chem. Phys. 33, 872 (1960)] and extended by Fulton and Gouterman [J. Chem. Phys. 35, 1059 (1961)]. The present work describes extension of this vibronic model to describe bichromophores with broken vibrational symmetry such as partly deuterated molecules. Additionally, the model is extended to include inter-chromophore vibrational modes. The model can treat multiple vibrational modes by employing Lanczos diagonalization procedure of sparse matrices. The developed vibronic model is applied to simulation of vibronic spectra of flexible bichromophore diphenylmethane and compared to high-resolution experimental spectra [J. A. Stearns, N. R. Pillsbury, K. O. Douglass, C. W. Mu?ller, T. S. Zwier, and D. F. Plusquellic, J. Chem. Phys. 129, 224305 (2008)].  相似文献   
3.
The structures of eight related known intermetallic structure types are the impetus to this paper: Li21Si5, Mg44Rh7, Zn13(Fe,Ni)2, Mg6Pd, Na6Tl, Zn91Ir11, Li13Na29Ba19, and Al69Ta39. All belong to the F43m space group, have roughly 400 atoms in their cubic unit cells, are built up at least partially from the gamma-brass structure, and exhibit pseudo-tenfold symmetric diffraction patterns. These pseudo-tenfold axes lie in the {110} directions, and thus present a paradox. The {110} set is comprised of three pairs of perpendicular directions. Yet no 3D point group contains a single pair of perpendicular fivefold axes (by Friedel's Law, a fivefold axis leads to a tenfold diffraction pattern). The current work seeks to resolve this paradox. Its resolution is based on the largest of all 4D Platonic solids, the 600-cell. We first review the 600-cell, building an intuition discussing 4D polyhedroids (4D polytopes). We then show that the positions of common atoms in the F43m structures lie close to the positions of vertices in a 3D projection of the 600-cell. For this purpose, we develop a projection method that we call intermediate projection. The introduction of the 600-cell resolves the above paradox. This 4D Platonic solid contains numerous orthogonal fivefold rotations. The six fivefold directions that are best preserved after projection prove to lie along the {110} directions of the F43m structures. Finally, this paper shows that at certain ideal projected cluster sizes related to one another by the golden mean (tau=(1+ radical 5)/2), constructive interference leading to tenfold diffraction patterns is optimized. It is these optimal values that predominate in actual F43m structures. Explicit comparison of experimental cluster sizes and theoretically derived cluster sizes shows a clear correspondence, both for isolated and crystalline pairs of projected 600-cells.  相似文献   
4.
Phosphorescence is commonly utilized for applications including light-emitting diodes and photovoltaics. Machine learning (ML) approaches trained on ab initio datasets of singlet–triplet energy gaps may expedite the discovery of phosphorescent compounds with the desired emission energies. However, we show that standard ML approaches for modeling potential energy surfaces inaccurately predict singlet–triplet energy gaps due to the failure to account for spatial localities of spin transitions. To solve this, we introduce localization layers in a neural network model that weight atomic contributions to the energy gap, thereby allowing the model to isolate the most determinative chemical environments. Trained on the singlet–triplet energy gaps of organic molecules, we apply our method to an out-of-sample test set of large phosphorescent compounds and demonstrate the substantial improvement that localization layers have on predicting their phosphorescence energies. Remarkably, the inferred localization weights have a strong relationship with the ab initio spin density of the singlet–triplet transition, and thus infer localities of the molecule that determine the spin transition, despite the fact that no direct electronic information was provided during training. The use of localization layers is expected to improve the modeling of many localized, non-extensive phenomena and could be implemented in any atom-centered neural network model.

We address phosphorescence, a localized phenomenon, by building localization layers into a DNN model of singlet–triplet energy gaps. These layers improve model performance and simultaneously infer the location of spin excitations within molecules.  相似文献   
5.
Myoglobin (Mb) double mutant T67R/S92D displays peroxidase enzymatic activity in contrast to the wild type protein. The CO adduct of T67R/S92D shows two CO absorption bands corresponding to the A(1) and A(3) substates. The equilibrium protein dynamics for the two distinct substates of the Mb double mutant are investigated by using two-dimensional infrared (2D IR) vibrational echo spectroscopy and molecular dynamics (MD) simulations. The time-dependent changes in the 2D IR vibrational echo line shapes for both of the substates are analyzed using the center line slope (CLS) method to obtain the frequency-frequency correlation function (FFCF). The results for the double mutant are compared to those from the wild type Mb. The experimentally determined FFCF is compared to the FFCF obtained from molecular dynamics simulations, thereby testing the capacity of a force field to determine the amplitudes and time scales of protein structural fluctuations on fast time scales. The results provide insights into the nature of the energy landscape around the free energy minimum of the folded protein structure.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号