首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   5篇
化学   95篇
晶体学   2篇
力学   1篇
数学   4篇
物理学   13篇
  2024年   3篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   11篇
  2016年   14篇
  2015年   3篇
  2014年   10篇
  2013年   12篇
  2012年   5篇
  2011年   9篇
  2010年   6篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2002年   2篇
  1998年   2篇
  1992年   1篇
  1981年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
Local atmospheric aerosol particulate samples, collected as composites on daily 6-12 hour basis, at Quaid-i-Azam University campus, Islamabad, Pakistan, using high volume sampling technique, were analysed for Pb, Na, K, Fe, Mn, Cd, Cr, Ni, Zn and Co by FAAS method. The monitoring period ran from October, 2001 through March, 2002, with a total of 105 samples collected on cellulose filters, treated in part with the HNO3-based wet digestion method for metal quantification, and for particle size distribution separately. The metal content of the aerosols was examined in relation to dependence on meteorological parameters, such as temperature, relative humidity, wind speed, sun shine and pan evaporation. Statistical correlation analysis was conducted for multiple metal pairs in aerosols, and the data were examined in relation to meteorological parameters and relevant aerosol particle size fractions. The study revealed no viable strong correlation between the meteorological parameters and metal levels; in general, however, a significant positive correlation was found for temperature. A strong positive correlation was observed for PM<25 and PM2.5-10. For coarse particles (PM10-100 and PM>100), however, a negative correlation was observed. The levels of Na, K, Fe and Zn were found in the range of 1-5 microg/m3 while those for the rest of the metals in the sub microg/m3 range. Principal component analysis and cluster analysis were performed on dataset for source identification and appointment. Largest contribution (33%) was shown by the industrial emissions followed by traffic/road dust (16.7%).  相似文献   
2.
3.
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.  相似文献   
4.
Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver–Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.  相似文献   
5.
The present study is concerned with the microbiological transformation of L-tyrosine to L-dopa by a newly isolated turkey tail mushroom Coriolus versicolor DOB-4. As tyrosinase (catechol oxidase, EC 1.10.3.1) is an extracellular enzyme, therefore biomass was used as an enzyme source in the reaction mixture. Biomass particles were pretreated with methanol and oven dried at 105 °C for 2 h. The optimal L-dopa production was achieved when 1.5 mg/ml L-tyrosine was used as the basal substrate. Thin layer chromatography and high-performance liquid chromatography analysis depicted that citric acid supports higher substrate conversion and product formation rates. A noticeable enhancement was observed when process parameters viz. L-tyrosine concentration (1.5 mg/ml), citric acid (1.5 mg/ml), time of incubation (50 min), and reaction temperature (60 °C) were optimized using Plackett–Burman design. The maximum production of L-dopa was found to be 0.872 mg/ml with L-tyrosine consumption of 1.002 mg/ml. The model terms were found highly significant (HS, p?≤?0.05), suggesting the potential commercial utility of the culture (df?=?3, LSD?=?0.342).  相似文献   
6.
Novel thermoplastic segmented poly(urethane-thiourea)s (PURs) were synthesized via one-step polymerization from aromatic diols containing sulfur (thiourea linkage) in the main-chain, including terephthaloyl bis (3-(2-hydroxopyridyl) thiourea) (TBHPT) and terephthaloyl bis (3-(5-naphtholyl) thiourea) (TBNT), along with 1,4-phenylene diisocyanate (PDI) as hard segment and 20, 50 and 80 mol% polyethylene glycol (PEG) as a soft segment. The prepared chain extenders and polymers were characterized by conventional methods, and physical properties such as ηinh, solubility, thermal stability and thermal behavior were studied. Easily processable PURs with excellent thermal stability were obtained by incorporating 20 mol% PEG in the soft segment. Thermogravimetric analysis indicated that poly(urethane-thiourea)s were fairly stable above 500 °C and own high glass transition temperatures about 263-266 °C. These polymers also showed partially crystalline structures. Ultimately, weight average molecular weights (Mw) of PURs were up to 109 × 103. Compared to typical polyurethanes, PURs exhibited better thermal stability and Tg’s owing to rigid hard segment structure.  相似文献   
7.
A double‐layer hollow fiber is fabricated where an isoporous surface of polystyrene‐block‐poly(4‐vinylpyridine) is fixed on a support layer by co‐extrusion. Due to the sulfonation of the support layer material, delamination of the two layers is suppressed without increasing the number of subsequent processing steps for isoporous composite membrane formation. Electron microscope‐energy‐dispersive X‐ray spectroscopy images unveil the existence of a high sulfur concentration in the interfacial region by which in‐process H‐bond formation between the layers is evidenced. For the very first time, our study reports a facile method to fabricate a sturdy isoporous double‐layer hollow fiber.

  相似文献   

8.
9.
A new generation of segmented thermoplastic poly(urethane-thiourea-imide)s (PUTIs) was synthesized via reaction of polyethylene glycol and thiourea-based prepolymer with dianhydride as chain extenders. NCO-terminated prepolymer was synthesized from a new diisocyanate, 3-(3-((4-isocyanatophenyl)carbamoyl)thioureido)phenyl-4-isocyanatophenylcarbamate (IPCT), as a hard segment and PEG forming soft segment. The starting materials and polymers were characterized by conventional methods and physical properties such as solubility, solution viscosity, molecular weight, thermal stability and thermal behavior were studied. PUTIs showed partially crystalline structures. Weight average molecular weights of PUTIs (GPC measurements) were in the range of 1,68,694-1,97,035. Moreover, thermogravimetric analysis indicated that poly(urethane-thiourea-imide)s were fairly stable above 500 °C having T10 of 521-543 °C. Investigation of the results authenticated the approach of introducing thiourea (using IPCT) and imide structure in polyurethanes for the improvement of thermal stability. In comparison to typical polyurethanes, these polymers exhibited better heat resistance, chemical resistance as well as processability.  相似文献   
10.

Abstract  

New diacid dichlorides bearing phenyl thiourea groups were prepared by a facile synthetic approach and characterized using spectroscopic and elemental analyses. A series of novel aromatic and semiaromatic polyamides were prepared via a condensation route from the synthesized diacid dichlorides with 4,4′-oxydianiline. The polymers were characterized by FT-IR, 1H NMR, 13C NMR, and their physical properties, including their solution viscosities, solubilities and thermal properties, were studied too. Polyamides with phenyl thiourea moieties in the backbone showed good solubilities in amide solvents such as DMAc, DMF, DMSO, and NMP. All of the synthesized polymers had η inh values of 0.042–0.053 dm3/g, and were obtained in quantitative yield. GPC measurements of the synthesized polyamides indicated M w values of 64,759–86,172. The crystallinity of the polymers was evaluated via their X-ray diffraction patterns. Their glass transition temperatures were found to be 218–229 °C. Furthermore, thermogravimetric analysis indicated that the polymers were thermally stable in the range 300–398 °C in a N2 atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号