首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学   7篇
物理学   9篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
排序方式: 共有16条查询结果,搜索用时 250 毫秒
1.
Journal of Solid State Electrochemistry - Manganese phosphate (Mn3(PO4)2) particles decorated polyaniline (PANI) have been proposed as a promising electrode material for supercapacitors. Mn3(PO4)2...  相似文献   
2.
Y2O3 nanoparticles and nanorods have been firstly synthesized in bulk Ti-Y films prepared by magnetron sputtering on Si (100) substrates at different temperatures. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS) are used to characterize the structure, morphology, and composition of the as-synthesized nanoparticles and nanorods. The mechanical properties of the sputtered films are investigated using nanoindentation techniques. The results indicate that both the nanoparticles and nanorods have a pure cubic Y2O3 structure resulting from the reaction of Y atoms with the residual O2 in the vacuum chamber, and are free from defects and dislocations with uniform diameters of about 30 nm. The Y2O3 nanoparticles mainly distribute at the grain boundaries of the Ti matrix and the nanorods have lengths ranging from 250 nm to more than 1 μm with the growth direction parallel to the (002) plane. As the growth temperature elevates, the nanoparticles turn to be coarsening while more and longer nanorods are inclined to form. Compared with the Ti film, the TiY films have a remarkable increase in hardness, but do not exhibit expected increase in elastic modulus. Finally, the growth mechanism is also briefly discussed.  相似文献   
3.

Nickel oxide (NiO) was synthesized via a one-step facile method. X-ray diffraction analysis confirmed the face-centered cubic structure of NiO. The bonding nature and surface purity were confirmed via Fourier-transform infrared spectroscopy. NiO revealed partial spherical morphology with less particle aggregation. The optical bandgap of NiO was found to be 3.75 eV. Cyclic voltammetry revealed well-defined oxidation and reduction peaks for NiO. The charge–discharge curve exhibited specific capacitance of 184.6 F/g at current density of 0.3 A/g. NiO electrode exhibited longer cyclic stability of 93 % up to 1500 cycles. In addition, NiO + H2O2 revealed efficient photocatalytic degradation of methylene blue (organic pollutant) under visible-light irradiation with degradation efficiency of ~88 %. These results confirm that nanosized NiO is more suitable for dual application.

  相似文献   
4.
Quantum dots of Mn doped Zinc Selenide with N-Methylaniline as the capping agent was prepared by simple and inexpensive wet chemical method. Size of the particles observed by TEM was of the order of 2-4 nm which was well consistent with the size measured by UV analysis. The presence of paramagnetic substance Mn2+ in the ZnSe quantum dots was confirmed by EPR measurement. Mn doped ZnSe nanoparticles exhibited a strong blue emission that was strongly dependent upon the Mn dopant level and the surface passivation produced by N-Methylaniline. The stability of the product was studied by thermal analysis which shows that this product is highly suitable for opto-electronic applications.  相似文献   
5.
An effective method for the fabrication of thin film of single wall carbon nanotubes (SWCNT) using the electro-hydrodynamic atomization (EHDA) deposition technique was demonstrated. In this study, the SWCNT aqueous based dispersion ink was subjected to electrostatic atomization by using an EHDA deposition system. The ink flow visualization under the influence of electric field was performed and the operating EHDA parametric envelope of the ink was explored. Then the deposition of SWCNT through the EHDA process was carried out onto a metallic substrate at a fixed flow rate and corresponding applied voltage thereby achieving thickness ranging from ??70 to 130?nm by making multiple deposition passes. The microscopic inspection of the film was performed and thin film quality was examined by scanning electron microscope analysis. Finally, electrical behavior of the SWCNT film onto a metallic substrate through temperature dependent current-voltage measurements was investigated. The SWCNT film deposited onto the metallic substrate showed electrical conductivity of ??2.98?S/cm.  相似文献   
6.
In this work, a liquid chromatography coupled with electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated for quantification of bile acids in fecal materials. Co-eluting matrix impurities in fecal materials have been shown to greatly suppress the ionization of analytes in mass spectrometry, which is known as the matrix effect. To correct large quantitative errors caused by the matrix effect, we developed a scheme that combined the standard addition method with internal standard (SA-IS). The fecal sample pretreatment involved a single step of extraction with ethanol. Bile acids were separated using a Luna C(18) column (150 mm, 2 mm i.d., 5 μm) with gradient elution. The deprotonated analytes were detected in selective ion monitoring mode. Our results showed that, by using this method, the accuracy of quantification was significantly improved in comparison to the conventional internal standard method. The linearity, sensitivity, accuracy and precision of the method were within the range of 0.05-5 μmol/L. This SA-IS method was successfully applied to the analysis of bile acids in the samples collected from patients diagnosed with inflammatory bowel disease.  相似文献   
7.
8.
We demonstrated the effect of ZnO (different wt%)-coated LiMnPO4-based cathode materials for electrochemical lithium ion batteries. ZnO-coated LiMnPO4 cathode materials were prepared by the sol-gel method. X-ray diffraction (XRD) analysis indicates that there is no change in structure caused by ZnO coating, and field emission scanning electron microscopy (FESEM) images depict the closely packed particles. Galvanostatic charge-discharge tests show the ZnO-coated LiMnPO4 sample has an enhanced electrochemical performance as compared to pristine LiMnPO4. The 2 wt% of ZnO-based LiMnPO4 exhibited maximum discharge capacity of 102.2 mAh g?1 than pristine LiMnPO4 (86.2 mAh g?1) and 1 wt% of ZnO-based LiMnPO4 (96.3 mAh g?1). The maximum cyclic stability of 96.3 % was observed in 2 wt% of ZnO-based LiMnPO4 up to 100 cycles. This work exhibited a promising way to develop a surface-modified LiMnPO4 using ZnO for enhanced electrochemical performance in device application.  相似文献   
9.
10.
In this paper, we report an alternate technique for the deposition of nanostructured TiO2 thin films using the electrohydrodynamic atomization (EHDA) technique using polyvinylpyrrolidone (PVP) as a stabilizer. The required parameters for achieving uniform TiO2 films using EHDA are also discussed in detail. X-ray diffraction results confirm that the TiO2 films were oriented in the anatase phase. Scanning electron microscope studies revealed the uniform deposition of the TiO2. The purity of the films is characterized by using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the presence of Ti–O bonding in the films without any organic residue. The optical properties of the TiO2 films were measured by UV-visible spectroscopy, which shows that the transparency of the films is nearly 85% in the visible region. The current–voltage (IV) curve of the TiO2 thin films shows a nearly linear behavior with 45 mΩ?cm of electrical resistivity. These results suggest that TiO2 thin films deposited via the EHDA method possess promising applications in optoelectronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号