首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2004年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Abstract— The Fourier-transform infrared spectra of chloroform-d solutions of conjugated imines CH3CH=CHCH=NCH(CH3)2 and CH3CH2CH=CHCH=CHCH=NCH(CH3)2 and the related protonated species with HCl, HBr, HI, trichloro, dichloro, monobromo and monochloroacetic acids or propionic acid are presented. The effects of conjugation and protonation are examined. The results show that conjugation slightly increases the basicity of the Schiff bases. HCl, HBr and HI protonate the Schiff bases completely. The carboxylic acids protonate partially depending on their p K a, values. When the Schiff base contains two (or more) C=C bonds conjugated with C=N, the main C=C stretching band undergoes a strong intensification showing that sizeable dipole moment variations occur along the conjugated chain.  相似文献   
2.
At present, the question of how the structural state of the erythrocyte cytosol is arranged to maintain essential permeabilities successfully both at normal temperature and during periods with a significant body temperature reduction during hypobiosis remains unanswered. In the present work, we performed comparative investigations of temperature-dependent changes in the cytosol state of erythrocytes from animals subjected to natural (winter hibernating ground squirrels) or artificial hypobiosis. The cytosol state was evaluated by the ESR method of spin probes (TEMPON) within the temperature range of 0-50 degrees C. Erythrocyte resistance to acid hemolysis, which is limited by the permeability of membranes for protons and the state of the anion channel, were determined using the method described by Terskov and Getelson [Biofizika 2 (1957) 259]. A change in cytosol microviscosity of erythrocytes was found as well as a temperature-dependent increase in acid resistance of erythrocytes. Our investigations allow us to conclude that physiological changes occurring in a mammalian organism during natural and artificial hypobiosis are accompanied by structural modifications of the erythrocyte cytosol. The temperature range where these modifications are observed (8, 15, 40 degrees C) suggests that the most probable modifying link is spectrin and/or the sites of its interaction with membrane. The interaction of cytoskeletal components with the cell membrane plays a key role in regulation of membrane permeability, suggesting an important role of this interaction in the adaptive reactions of erythrocytes.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号