首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We describe an electrochemiluminescence (ECL) immunoarray incorporated into a prototype microfluidic device for highly sensitive protein detection and apply this system to accurate, sensitive measurements of prostate-specific antigen (PSA) and interleukin-6 (IL-6) in serum. The microfluidic system employed three molded polydimethylsiloxane (PDMS) channels on a conductive pyrolytic graphite chip (2.5?×?2.5 cm) inserted into a machined chamber and interfaced with a pump, switching valve, and sample injector. Each of the three PDMS channels encompasses three 3 μL analytical wells. Capture-antibody-decorated single-wall carbon nanotube forests are fabricated in the bottom of the wells. The antigen is captured by these antibodies on the well bottoms. Then, a RuBPY-silica-secondary antibody (Ab2) label is injected to bind to antigen on the array, followed by injection of sacrificial reductant tripropylamine (TPrA) to produce ECL. For detection, the chip is placed into an open-top ECL measuring cell, and the channels are in contact with electrolyte in the chamber. Potential applied at 0.95 V versus Ag/AgCl oxidizes TPrA to produce ECL by redox cycling the RuBPY species in the particles, and ECL light is measured by a charge-coupled device camera. This approach achieved ultralow detection limits of 100 fg?mL?1 for PSA (9 zeptomole) and 10 fg?mL?1 (1 zeptomole) for IL-6 in calf serum, a 10–25-fold improvement of a similar non-microfluidic array. PSA and IL-6 in synthetic cancer patient serum samples were detected in 1.1 h and results correlated well with single-protein enzyme-linked immunosorbent assays.  相似文献   
2.

Present experimental investigation incorporates characterization of Al nanopowder, synthesis of Al/water nanofluids, and effect of these nanofluids on thermal performance of compact heat exchanger. Al nanoparticles are characterized using TEM and XRD. Al/water nanofluid is prepared by dispersing metal basis aluminium nanoparticles of average 100 nm size into double distilled water at two different particle volume concentrations of 0.1 and 0.2%. The nanofluids are prepared by two-step method and cetyl trimethyl ammonium bromide surfactant is used to stabilize the nanofluid. Thermo-physical properties of nanofluids at two different concentrations and their variation with fluid temperature are measured experimentally. It is examined that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. Furthermore, by increasing the fluid temperature, thermal conductivity is intensified, while the viscosity and density are decreased. Heat transfer parameters are strong functions of these thermo-physical properties. Therefore, comprehensive findings on heat transfer coefficient, Nusselt number, colburn factor, friction factor, and effectiveness are determined experimentally for prepared nanofluids passing under laminar conditions through single-pass cross-flow compact heat exchanger attached with multi-louvered fins.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号