首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
数学   1篇
物理学   1篇
  2008年   2篇
  2006年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
The hydration structures and dynamics of naphthalene in aqueous solution are examined using molecular-dynamics simulations. The simulations are performed at several state points along the coexistence curve of water up to the critical point, and above the critical point with the density fixed at 0.3 g/cm(3). Spatial maps of local atomic pair-density are presented which show a detailed picture of the hydration shell around a bicyclic aromatic structure. The self-diffusion coefficient of naphthalene is also calculated. It is shown that water molecules tend to form pi-type complexes with the two aromatic regions of naphthalene, where water acts as the H-bond donor. At ambient conditions, the hydration shell of naphthalene is comprised, on average, of about 39 water molecules. Within this shell, two water molecules can be identified as pi-coordinating, forming close to one H-bond to the aromatic rings. With increasing temperature, the hydration of naphthalene changes dramatically, leading to the disappearance of the pi-coordination near the critical point.  相似文献   
3.
The hydration structures and dynamics of phenol in aqueous solution at infinite dilution are investigated using molecular-dynamics simulation technique. The simulations are performed at several temperatures along the coexistence curve of water up to the critical point, and above the critical point with density fixed at 0.3 g/cm3. The hydration structures of phenol are characterized using the radial, cylindrical, and spatial distribution functions. In particular, full spatial maps of local atomic (solvent) density around a solute molecule are presented. It is demonstrated that in addition to normal H bonds with hydroxyl group of phenol, water forms pi-type complexes with the center of the benzene ring, in which H2O molecules act as H-bond donor. At ambient conditions phenol is solvated by 38 water molecules, which make up a large hydrophobic cavity, and forms on average 2.39 H bonds (1.55 of which are due to the hydroxyl group-water interactions and 0.84 are due to the pi complex) with its hydration shell. As temperature increases, the hydration structure of phenol undergoes significant changes. The disappearance of the pi-type H bonding is observed near the critical point. Self-diffusion coefficients of water and phenol are also calculated. Dramatic increase in the diffusivity of phenol in aqueous solution is observed near the critical point of simple point-charge-extended water and is related to the changes in water structure at these conditions.  相似文献   
4.
Formation of NaCl nanoparticles in supercritical water is studied using molecular dynamics simulation method. We have simulated particle nucleation and growth in NaCl-H2O fluids, with salt concentration of 5.1 wt %, in the temperature and density range of 673-1073 K and 0.17-0.34 g/cm(3), respectively. The cluster size distributions, the size of critical nuclei and cluster lifetimes are reported. The size distribution of emerging clusters shows a very strong dependence on the system's density, with larger clusters forming at lower densities. Clusters consisting of approximately 14-24 ions appear critical for the thermodynamic states examined. The local structures of critical clusters are found to be amorphous. The lifetime values for clusters containing more than 20 ions are in the range of 10-50 ps. We have calculated the NaCl nucleation rates, which appear to be on the order of 10(28) cm(-3) s(-1).  相似文献   
5.
Time-harmonic electromagnetic waves are scattered by a homogeneouschiral obstacle embedded in a chiral environment. The correspondingtransmission problem is reduced, via Bohren's decomposition,to an integral equation over the interface between the obstacleand the surrounding medium. This integral equation is shownto be uniquely solvable except for a discrete set of electromagneticparameters of the obstacle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号