首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学   17篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Positive and negative ion electrospray ionization (ESI) tandem mass spectral study of a new series of hybrid peptides, viz, BocN-alpha,beta-peptides and BocN-beta,alpha-peptides, synthesized from C-linked carbo-beta3-amino acids [Caa (S)] and L-Ala has been carried out. The alpha,beta-peptides have been differentiated from beta,alpha-peptides by the collision-induced dissociation (CID) of [M + H]+ and [M - H]- ions in positive and negative ion ESI-MS respectively. The fragment ion [M + H - C(CH3)3 + H]+ formed from [M + H]+ ions by the loss of 2-methyl-prop-2-ene in alpha,beta-peptides with L-Ala at the N-terminus is insignificant or totally absent for beta,alpha-peptides which have the Caa (S) at N-terminus. The fragment ion [M - H-C(CH3)3OH - HNCO]- formed from [M - H]- of beta,alpha-peptide acids is totally absent for alpha,beta-peptide acids. This has been attributed to the absence of the beta-methylene group in alpha,beta-peptides, and the participation of the beta-methylene group in the loss of HNCO in beta,alpha-peptide acids is confirmed by the deuteration experiments. The CID of [M + H-Boc + H]+ ions of these peptides also produce characteristic fragmentation. In the CID spectra of alpha,beta-peptides, the b(n)+ ions and the resulting y(n)+ ions occur at a mass difference of 243 and 71 Da corresponding to the successive losses of Caa and L-Ala, whereas a mass difference of 71 and 243 Da is observed for beta,alpha-peptides. In contrast to the CID of protonated peptides, the CID of [M - H]- ions of the alpha,beta- and beta,alpha-peptide acids do not give b(n)- ions and show abundant z(n) (-) ions. Further, a pair of diastereomeric dipeptide esters and acids have been distinguished by the CID of [M + H]+ ions. The loss of 2-methyl-prop-2-ene is more pronounced for Boc-NH-Caa(R)-D-Ala-OCH3 (21) and Boc-NH-Caa(R)-D-Ala-OH (23) with Caa (R) at the N-terminus, whereas it is totally absent for Boc-NH-Caa (S)-D-Ala-OCH3 (22) and Boc-NH-Caa(S)-D-Ala-OH (24) peptides, which have Caa (S) at the N-terminus. Thus, on the basis of our previous and present studies, we propose that the CID of [M + H]+ ions provides a simple and useful method for distinguishing the configuration of Caa (S or R) at the N-terminus of BocN-carbo beta,alpha- and beta,beta-dipeptides.  相似文献   
2.
In this study, a Zn-based metal-organic framework (MOF)-zeolite composite ZSM-5@IRMOF-1 was synthesized for the alternative production of BTX from isopropyl alcohol (IPA). Incorporation ensured the capacity to tune the Lewis acidity at a framework level and design accessible pore structures, making composites highly attractive to be used as catalysts. The combination of monodispersed HZSM-5 zeolites on and within acidic IRMOF-1 provided the highly selective production of lower aromatics from IPA. The interaction of IPA with catalysts was investigated at different temperatures in a fixed-bed continuous flow reactor. The obtained product was analyzed using a standard test method ASTM D6730 through gas chromatography-detail hydrocarbon analyser. The results indicated that the reaction between IPA and MOF-supported zeolite occurred without substantial participation of MOFs. The maximum aromatic (BTEX) selectivity of 38.2% was achieved among all hydrocarbons at 92.3% carbon conversion. In addition, the gas yield was <20% for this catalyst system. The appropriate density of Brønsted and Lewis acidic sites and hierarchical pore structures provided the composite catalyst with outstanding aromatic selectivity yield and high stability.  相似文献   
3.
Dissociation pathways of a series of alkali-cationized hybrid peptides, viz., Boc-alpha,beta- and -beta,alpha-carbopeptides, synthesized from C-linked carbo-beta3-amino acids [Caa (S)] and alpha-alanine (L-Ala), have been investigated by electrospray ionization tandem mass spectrometry. The positional isomers (six pairs) of the cationized alpha,beta- and beta,alpha-peptides can be differentiated by the collision-induced dissociation (CID) spectra of their [M + Cat-Boc + H]+ ions which give characteristic series of alkali-cationized C- (x(n)+, y(n)+, z(n)+) and N-terminal (a(n)+, b(n)+, c(n)+) ions. Another noteworthy difference is cationized beta,alpha-peptides eliminate a molecule of ammonia whereas this pathway is absent for alpha,beta-peptides. This is useful for identifying the presence of a beta-amino acid at the N-terminus. The CID spectra of [M + Cat-Boc + H]+ ions of these peptide acids show abundant rearrangement [b(n) + 17 + Cat]+ (n = 1 to n-1) ions which is diagnostic for distinguishing between alpha- and beta-amino acid at the C-terminus. MS(n) experiments of [b(n) + Li-H]+ ions from these hybrid peptides showed the loss of CO and 72 u giving rise to [a(n) + Li-H]+ and cationized nitrile product ions which render support to earlier proposals that b(n)+ or [b(n) + Cat-H]+ ions have protonated or cationized oxazolinone structures, respectively.  相似文献   
4.
5.
The 3‐amino‐6‐(trifluoromethyl)furo[2,3‐b]pyridine‐2‐carbohydrazide ( 5 ) was prepared from 3‐cyano‐6‐trifluoromethyl‐2(1H)pyridone ( 2 ) in series of steps via selective O‐alkylation, Thorpe–Ziegler cyclization followed by reaction with hydrazine hydrate. The 2‐carbohydrazide ( 5 ) was further reacted with aliphatic acids under different reaction temperatures to form a series of novel N‐acylfuro[2,3‐b]pyridine‐2‐carbohydrazide ( 6 ) and pyrido[3′,2′:4,5]furo[3,2‐d]pyrimidine derivatives ( 7 ). All the compounds 6 and 7 were screened for cytotoxic activity against breast carcinoma MD Anderson‐Metastatic Breast (MDA‐MB) 231 (aggressive) cell lines at 10 µM concentration. Compounds 6a , 6b , and 6c showed promising activity.  相似文献   
6.
A new three‐residue turn was serendipitously discovered in α/β hybrid peptides derived from alternating C‐linked carbo‐β‐amino acids (β‐Caa) and L ‐Ala residues. The three‐residue β‐α‐β turn at the C termini, nucleated by a helix at the N termini, resulted in helix‐turn (HT) supersecondary structures in these peptides. The turn in the HT motif is stabilized by two H bonds—CO(i?2)–NH(i), with a seven‐membered pseudoring (γ turn) in the backward direction, and NH(i?2)–CO(i), with a 13‐membered pseudoring in the forward direction (i being the last residue)—at the C termini. The study was extended to generalize the new three‐residue turn (β‐α‐β) by using different α and β‐amino acids. Furthermore, the HT motifs were efficiently converted, by an extension with helical oligomers at the C termini, into peptides with novel helix‐turn‐helix (HTH) tertiary structures. However, this resulted in the destabilization of the β‐α‐β turn with the concomitant nucleation of another three‐residue turn, α‐β‐β, which is stabilized by 11‐ and 15‐membered bifurcated H bonds. Extensive NMR spectroscopic studies were carried out to delineate the secondary and tertiary structures in these peptides, which are further supported by molecular dynamics (MD) investigations.  相似文献   
7.
Origami peptides : A novel class of foldamers consisting of α/δ‐hybrid peptides has been investigated theoretically and experimentally by exploiting the rigidity of the side chain of a new δ‐amino acid prepared from D ‐glucose and D ‐xylose with a furanose side chain (see figure).

  相似文献   

8.
9.
10.
Synthetic oligomers that are derived from natural polypeptide sequences, albeit with unnatural building blocks, have attracted considerable interest in mimicking bioactive peptides and proteins. Many of those compounds adopt stable folds in aqueous environments that resemble protein structural elements. Here we have chemically prepared aliphatic oligoureas and labeled them at selected positions with (15)N for structural investigations using solid-state NMR spectroscopy. In the first step, the main tensor elements and the molecular alignment of the (15)N chemical shift tensor were analyzed. This was possible by using a two-dimensional heteronuclear chemical shift/dipolar coupling correlation experiment on a model compound that represents the chemical, and thereby also the chemical shift characteristics, of the urea bond. In the next step (15)N labeled versions of an amphipathic oligourea, that exert potent antimicrobial activities and that adopt stable helical structures in aqueous environments, were prepared. These compounds were reconstituted into oriented phospholipid bilayers and the (15)N chemical shift and (1)H-(15)N dipolar couplings of two labeled sites were determined by solid-state NMR spectroscopy. The data are indicative of an alignment of this helix parallel to the membrane surface in excellent agreement with the amphipathic character of the foldamer and consistent with previous models explaining the antimicrobial activities of α-peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号