首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
化学   25篇
物理学   15篇
  2017年   2篇
  2015年   2篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1984年   2篇
排序方式: 共有40条查询结果,搜索用时 78 毫秒
1.
The increasing scientific and industrial interest towards metabonomics takes advantage from the high qualitative and quantitative information level of nuclear magnetic resonance (NMR) spectroscopy. However, several chemical and physical factors can affect the absolute and the relative position of an NMR signal and it is not always possible or desirable to eliminate these effects a priori. To remove misalignment of NMR signals a posteriori, several algorithms have been proposed in the literature. The icoshift program presented here is an open source and highly efficient program designed for solving signal alignment problems in metabonomic NMR data analysis. The icoshift algorithm is based on correlation shifting of spectral intervals and employs an FFT engine that aligns all spectra simultaneously. The algorithm is demonstrated to be faster than similar methods found in the literature making full-resolution alignment of large datasets feasible and thus avoiding down-sampling steps such as binning. The algorithm uses missing values as a filling alternative in order to avoid spectral artifacts at the segment boundaries. The algorithm is made open source and the Matlab code including documentation can be downloaded from www.models.life.ku.dk.  相似文献   
2.
In general, the proton NMR spectra of chiral molecules aligned in the chiral liquid crystalline media are broad and featureless. The analyses of such intricate NMR spectra and their routine use for spectral discrimination of R and S optical enantiomers are hindered. A method is developed in the present study which involves spin state selective two dimensional correlation of higher quantum coherence to its single quantum coherence of a chemically isolated group of coupled protons. This enables the spin state selective detection of proton single quantum transitions based on the spin states of the passive nuclei. The technique provides the relative signs and magnitudes of the couplings by overcoming the problems of enantiomer discrimination, spectral complexity and poor resolution, permitting the complete analyses of the otherwise broad and featureless spectra. A non-selective 180 degrees pulse in the middle of MQ dimension retains all the remote passive couplings. This accompanied by spin selective MQ-SQ conversion leads to spin state selective coherence transfer. The removal of field inhomogeneity contributes to dramatically enhanced resolution. The difference in the cumulative additive values of chemical shift anisotropies and the passive couplings, between the enantiomers, achieved by detecting Nth quantum coherence of N magnetically equivalent spins provides enhanced separation of enantiomer peaks. The developed methodology has been demonstrated on four different chiral molecules with varied number of interacting spins, each having a chiral centre.  相似文献   
3.
The differences in chemical shift anisotropies, dipolar couplings, and quadrupolar couplings of two enantiomers in the chiral liquid crystalline media are employed to visualize enantiomers. In spite of the fact that proton has high magnetic moment and is abundantly present in all the chiral molecules, 1H NMR is not exploited to its full potential because of severe overlap of unresolved transitions arising from long- and short-distance couplings. Furthermore, the two spectra from R and S enantiomers result in doubling of the number of observable transitions. The present study demonstrates the application of the selectively excited homonuclear double quantum (DQ) coherence correlated to its single quantum coherence of an isolated methyl group in a chiral molecule. The DQ dimension retains only the passive couplings within the protons of the methyl group while the long-distance passive couplings are refocused, removing the overlap of central transitions, and each enantiomer displays a doublet instead of a triplet unlike in regular selective refocusing experiment. The doublet separation being different for each enantiomer results in their discrimination. The cross section taken along the single quantum dimension pertaining to each transition in the DQ dimension provides the one-dimensional spectra for each individual enantiomer with the complete removal of the overlapped transitions from the other enantiomer. The experiment is robust, the pulse sequence is easy to implement, and the methodology has been demonstrated on different chiral molecules.  相似文献   
4.
NMR spectra of 1,2-dibromo-1,1-difluoroethane and 1-bromo-2-iodo-tetrafluoroethane dissolved in nematic liquid crystalline solvents have been analysed to yield the magnitudes and signs of the scalar couplings, J(ij), and total anisotropic couplings, T(ij), between all the (1)H, (19)F, and (13)C nuclei, except for those between two (13)C nuclei. The values obtained for T(ij) in principle contain a contribution from J(ij)(aniso), the component along the static applied magnetic field of the anisotropic part of the electron-mediated spin-spin coupling. Neglecting this contribution allows partially averaged dipolar couplings, D(ij), to be extracted from the T(ij), and these were used to determine the structure, orientational order, and the conformational distribution generated by rotation about the C-C bond. The values obtained are compared with the results of calculations by ab initio and density functional methods. The differences found are no greater than those obtained for similar compounds which do not contain fluorine, so that there is no definitive evidence for significant contributions from J(CF)(aniso) or J(FF)(aniso) in the two compounds studied.  相似文献   
5.
6.
A novel method for assigning the resonances in the 13C NMR spectrum of a static liquid crystalline sample in its nematic phase is proposed. The method is based on the fact that the carbon chemical shifts in the isotropic phase and in the oriented phase under static and off-magic angle spinning (OMAS) conditions are uniquely related by the tensorial property of the CSA tensor, requiring just one OMAS spectrum and the assignment in the isotropic phase. A computational procedure is proposed to take into account deviations arising out of non-ideal experimental conditions and the assignments are made by identifying the minimum in the differences in the frequencies between calculated and experimental line positions. Practical implementation of the method has also been demonstrated in the case of the liquid crystal N-(4-ethoxybenzylidene)-4-n-butylaniline.  相似文献   
7.
Partially averaged dipolar couplings (also referred to as residual dipolar couplings) D(ij) can be obtained from the analysis of the NMR spectra of molecules dissolved in liquid-crystalline solvents. Their values for a nonrigid molecule depend upon the bond lengths and angles, the rotational potentials, and the orientational order of the molecules. The molecule studied, 1-chloro-2-bromoethane, is one of the simplest example of a substituted alkane in which the rotational potential has three minimum-energy positions, trans and gauche+/-conformations, and the present investigation explores the problems inherent in deriving the form of the potential and the molecular geometry from the set of partially averaged couplings between the protons, and between protons and (13)C nuclei. The geometrical parameters and the rotational potential obtained are compared with the results from a density-functional theory method.  相似文献   
8.
It is shown that the proton NMR spectra of molecules containing rare spins at natural abundance dissolved in a liquid crystalline solvent can be obtained free from the strong lines from the spectrum of the abundant isotopomer by the 2D HSQC NMR experiment. The technique can also give the individual chemical shifts of the rare spins, and, for a molecule containing another abundant nucleus, such as fluorine, the rare spin--(19)F total anisotropic couplings are also obtained. The usefulness of the technique is demonstrated for molecules containing (13)C as the rare spins.  相似文献   
9.
NMR spectroscopic discrimination of optical enantiomers is most often carried out using (2)H and (13)C spectra of chiral molecules aligned in a chiral liquid crystalline solvent. The use of proton NMR for such a purpose is severely hindered due to the spectral complexity and the significant loss of resolution arising from numerous short- and long-distance couplings and the indistinguishable overlap of spectra from both R and S enantiomers. The determination of all the spectral parameters by the analyses of such intricate NMR spectra poses challenges, such as, unraveling of the resonances for each enantiomer, spectral resolution, and simplification of the multiplet pattern. The present study exploits the spin state selection achieved by the two-dimensional (1)H NMR correlation of selectively excited isolated coupled spins (Soft-COSY) of the molecules to overcome these problems. The experiment provides the relative signs and magnitudes of all of the proton-proton couplings, which are otherwise not possible to determine from the broad and featureless one-dimensional (1)H spectra. The utilization of the method for quantification of enantiomeric excess has been demonstrated. The studies on different chiral molecules, each having a chiral center, whose spectral complexity increases with the increasing number of interacting spins, and the advantages and limitations of the method over SERF and DQ-SERF experiments have been reported in this work.  相似文献   
10.
The spectra of molecules oriented in liquid crystalline media are dominated by partially averaged dipolar couplings. In the 13C-1H HSQC, due to the inefficient hetero-nuclear dipolar decoupling in the indirect dimension, normally carried out by using a pi pulse, there is a considerable loss of resolution. Furthermore, in such strongly orienting media the 1H-1H and 13C-1H dipolar couplings leads to fast dephasing of transverse magnetization causing inefficient polarization transfer and hence the loss of sensitivity in the indirect dimension. In this study we have carried out 13C-1H HSQC experiment with efficient polarization transfer from 1H to 13C for molecules aligned in liquid crystalline media. The homonuclear dipolar decoupling using FFLG during the INEPT transfer delays and also during evolution period combined with the pi pulse heteronuclear decoupling in the t1 period has been applied. The studies showed a significant reduction in partially averaged dipolar couplings and thereby enhancement in the resolution and sensitivity in the indirect dimension. This has been demonstrated on pyridazine and pyrimidine oriented in the liquid crystal. The two closely resonating carbons in pyrimidine are better resolved in the present study compared to the earlier work [H.S. Vinay Deepak, Anu Joy, N. Suryaprakash, Determination of natural abundance 15N-1H and 13C-1H dipolar couplings of molecules in a strongly orienting media using two-dimensional inverse experiments, Magn. Reson. Chem. 44 (2006) 553-565].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号