首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   565篇
  免费   18篇
  国内免费   3篇
化学   471篇
晶体学   5篇
力学   2篇
数学   18篇
物理学   90篇
  2022年   3篇
  2021年   3篇
  2020年   7篇
  2019年   7篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   19篇
  2014年   17篇
  2013年   14篇
  2012年   38篇
  2011年   44篇
  2010年   12篇
  2009年   24篇
  2008年   38篇
  2007年   37篇
  2006年   38篇
  2005年   36篇
  2004年   33篇
  2003年   27篇
  2002年   24篇
  2001年   19篇
  2000年   6篇
  1999年   10篇
  1998年   4篇
  1997年   4篇
  1996年   9篇
  1994年   5篇
  1993年   4篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1985年   7篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1968年   3篇
  1961年   1篇
排序方式: 共有586条查询结果,搜索用时 15 毫秒
1.
2.
Tetrasubstituted (Z)-alkenes were readily prepared through the Horner-Wadsworth-Emmons reactions of methyl 2-[bis(2,2,2-trifluoroethyl)phosphono]propionate with aryl alkyl ketones by employing Sn(OSO(2)CF(3))(2) and N-ethylpiperidine.  相似文献   
3.
3-Alkylamido-3-deoxy-betulinic acids were synthesized and evaluated for anti-HIV activity as part of the structure-activity relationship study of the potent anti-HIV agent 3-O-(3',3'-dimethyl)-succinyl-betulinic acid (DSB) (2). 3Alpha-diglycorylamide-3-deoxy-betulinic acid demonstrated relatively potent anti-HIV activity (EC50 0.24 microm, TI 728). However, replacing the ester group at C-3 in 2 and its analogues with an amido group yielded inactive or much less potent compounds against HIV replication, indicating that the ester group at C-3 in 2-4 is essential for potent anti-HIV activity.  相似文献   
4.
We have investigated the excited-state properties and singlet oxygen ((1)Delta(g)) generation mechanism in phthalocyanines (4M; M = H(2), Mg, or Zn) and in low-symmetry metal-free, magnesium, and zinc tetraazaporphyrins (TAPs), that is, monobenzo-substituted (1M), adjacently dibenzo-substituted (2AdM), oppositely dibenzo-substituted (2OpM), and tribenzo-substituted (3M) TAP derivatives, whose pi conjugated systems were altered by fusing benzo rings. The S(1)(x) and S(1)(y) states (these lowest excited singlet states are degenerate in D(4)(h) symmetry) split in the low-symmetry TAP derivatives. The excited-state energies were quantitatively determined from the electronic absorption spectra. The lowest excited triplet (T(1)(x)) energies were also determined from phosphorescence spectra, while the second lowest excited triplet (T(1)(y)) states were evaluated by using the energy splitting between the T(1)(x) and T(1)(y) states previously reported (Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422-4435). The singlet oxygen quantum yields (Phi(Delta)) are strongly dependent on the pi conjugated system. In particular, while the Phi(Delta) value of 2AdH(2) is smallest in our system, that of 2OpH(2), an isomer of 2AdH(2), is larger than that of 4Zn, in contrast to the heavy atom effect. The relationship between the molecular structure and Phi(Delta) values can be transformed into a relationship between the S(1)(x) --> T(1)(y) intersystem crossing rate constant (k(ISC)) and the energy difference between the S(1)(x) and T(1)(y) states (DeltaE(S)(x)(T)(y)). In each of the Zn, Mg, and metal-free compounds, the Phi(Delta)/tau(F) values (tau(F): fluorescence lifetime), which are related to the k(ISC) values, are proportional to exp(-DeltaE(S)(x)(T)(y)), indicating that singlet oxygen ((1)Delta(g)) is produced via the T(1)(y) state and that the S(1)(x) --> T(1)(y) ISC process follows the energy-gap law. From the viewpoint of photodynamic therapy, our methodology, where the Phi(Delta) value can be controlled by changing the symmetry of pi conjugated systems without heavy elements, appears useful for preparing novel photosensitizers.  相似文献   
5.
Despite their structural similarity, triangular tetradentate ligands 2b and 2c experience different assembly pathways on complexation with (en)Pd(NO3)2 to give M8L4 tetrahedral (3) and open cone (4) structures, respectively, due to steric restriction by side chains at the corner or on the edge of the ligands.  相似文献   
6.
Bian Y  Li L  Dou J  Cheng DY  Li R  Ma C  Ng DK  Kobayashi N  Jiang J 《Inorganic chemistry》2004,43(23):7539-7544
Three (1,8,15,22-tetrasubstituted phthalocyaninato)lead complexes Pb[Pc(alpha-OR)(4)] [H(2)Pc(alpha-OC(5)H(11))(4) = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine; H(2)Pc(alpha-OC(7)H(15))(4) = 1,8,15,22-tetrakis(2,4-dimethyl-3-pentyloxy)phthalocyanine; H(2)Pc(alpha-OC(10)H(7))(4) = 1,8,15,22-tetrakis(2-naphthyloxy)phthalocyanine] (1-3) have been prepared as racemic mixtures by treating the corresponding metal-free phthalocyanines H(2)Pc(alpha-OR)(4) (4-6) with Pb(OAc)(2).3H(2)O in refluxing n-pentanol. The molecular structure of Pb[Pc(alpha-OC(5)H(11))(4)] (1) in the solid state has been determined by single-crystal X-ray diffraction analysis. This compound, having a nonplanar structure, crystallizes in the monoclinic system with a P2(1)/c space group. Each unit cell contains two pairs of enantiomeric molecules, which are linked by weak coordination of the Pb atom of one molecule with an aza nitrogen atom and its neighboring oxygen atom from the alkoxy substituent of another molecule, forming a pseudo-double-decker supramolecular structure in the crystals with a short ring-to-ring separation, 2.726 A, and thus a strong ring-ring pi-pi interaction. The decreased molecular symmetry for these complexes has also been revealed by the NMR spectra of 1 and 2. The methyl protons of the 3-pentyloxy and 2,4-dimethyl-3-pentyloxy side chains of 1 and 2, respectively, are chemically inequivalent. In addition to the elemental analysis and various spectroscopic characterizations, these compounds have also been electrochemically studied. Two one-electron oxidations and up to five one-electron reductions have been revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods.  相似文献   
7.
We have studied the electronic structures of several gas phase exohedral lanthanide (Ln)-C(60) clusters, Ln(n)C(60) (Ln=Pr, Ho, Tb, Tm, Eu, and Yb) with n=1-4, by photoionization spectroscopy of the neutrals and photoelectron spectroscopy of their anions. Both of the spectroscopic analyses reveal that most of the Ln atoms preferably take +3 oxidation states, while Eu atoms alone assume +2 oxidation states, and that C(60) accepts up to twelve donated electrons in Ln(n)C(60). An additional photoionization examination of the oxygen atom mixing into the Ln(n)C(60) clusters demonstrated that each oxygen atom reduces two electrons from C(60). This result implies that the number of accepted electrons in C(60) can be varied by a suitable choice of the number of Ln atoms and O atoms.  相似文献   
8.
Chiral quaternary ammonium phenoxides were readily prepared from commercially available cinchona alkaloids and proved to be useful new asymmetric organocatalysts. Among various chiral quaternary ammonium phenoxides, a cinchonidine‐derived catalyst that bears both a sterically hindered N1‐9‐anthracenylmethyl group and a strongly electron withdrawing 9‐O‐3,5‐bis(trifluoromethyl)benzyl group were found to be highly effective for the Michael addition of ketene silyl acetals (derived from phenyl carboxylates) and α,β‐unsaturated ketones followed by lactonization. Optically active 3,4‐dihydropyran‐2‐one derivatives were obtained in high yields with excellent control of enantio‐ and diastereoselectivity. This catalyst can be handled in air and stored at room temperature in a sealed bottle without decomposition for at least one month.  相似文献   
9.
Zinc and palladium tetracyclic aromatic complexes lying structurally between tetraazaporphyrin (TAP) and phthalocyanine (Pc), that is, monobenzo-, adjacently dibenzo-, oppositely dibenzo-, and tribenzo-fused TAPs, have been prepared, and their electronic structures investigated by electronic absorption, magnetic circular dichroism (MCD), fluorescence, phosphorescence, and time-resolved electron paramagnetic resonance (TREPR) spectroscopy, as well as cyclic voltammetry. The last-named indicated that the first oxidation potentials shift to more negative values with increasing number of the fused benzo rings, but also suggested that the first reduction potential apparently has no correlation with the size and symmetry of the pi-conjugated systems. However, this latter behavior is reasonably interpreted by the finding that the effect of the fused benzo rings on destabilization of the LUMO depends on the orbital to which they are fused (i.e., whether it is an egx or egy orbital), since the LUMOs of TAP complexes are degenerate with D4h symmetry. The energy splitting of the LUMOs, that is, DeltaLUMO, was evaluated experimentally for the first time by analyzing the relationship between the first reduction potential and the size and shape of the pi-conjugated system. Electronic absorption and MCD measurements indicate that the lowest excited singlet states are split in the case of the low-symmetry TAP derivatives, although these excited states are degenerate for Pc and TAP with D4h symmetry. These energy splittings DeltaE(SS) correlate well with the DeltaLUMO values. To investigate the electronic structures in the lowest excited triplet state, zero-field splitting (zfs) was analyzed by time-resolved EPR (TREPR) spectroscopy. The energy splitting in the lowest excited triplet state, DeltaE(TT) was quantitatively evaluated from the temperature dependence of the zfs or spin-orbit coupling of the Pd complexes. Consequently, it is demonstrated that DeltaLUMO, DeltaE(SS), and DeltaE(TT) values exhibiting a mutually good relationship can be determined experimentally.  相似文献   
10.
Treatment of 1,1‐bis(pinacolatoboryl)ethene with an excess of 1‐bromo‐1‐lithioethene gave 2,3‐bis(pinacolatoboryl)‐1,3‐butadiene in high yield. Palladium‐catalyzed cross‐coupling of the resulting diborylbutadiene with aryl iodides took place smoothly in the presence of a catalytic amount of Pd(OAc)2/PPh3 and aqueous KOH to give 2,3‐diaryl‐1,3‐butadienes in good yields. The coupling reaction with commercially available 4‐acetoxyphenylmethyl chloride under the same conditions followed by hydrolysis of the acetyl groups gave anolignan B in a one‐pot manner. A variety of [3]‐ to [6]dendralenes were synthesized by palladium‐catalyzed coupling of the diene or 1,1‐bis(pinacolato)borylethene with alkenyl or dienyl halides, respectively, in good yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号