首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   9篇
化学   100篇
晶体学   2篇
力学   4篇
数学   14篇
物理学   17篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   9篇
  2014年   6篇
  2013年   6篇
  2012年   13篇
  2011年   14篇
  2010年   6篇
  2009年   2篇
  2008年   8篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
排序方式: 共有137条查询结果,搜索用时 0 毫秒
1.
2.
A solid-phase synthesis of substituted cyclic urea derivatives as potential heterocyclic library scaffolds is described. 2-Amino-3-nitropyridine is attached to Wang resin via a carbamate linkage. Reduction of the nitro group was achieved with SnCl(2).2H(2)O. Reductive alkylation with a range of substituted benzaldehydes followed by cyclative cleavage afforded a small library of 3-substituted imidazo[4,5-b]pyridine-2-ones in 33-45% yield and 59-88% purity. Subsequently, this methodology was applied to the synthesis of 3-substituted imidazo[4,5-f]quinolin-2-ones.  相似文献   
3.
The purpose of the work presented here was to evaluate the influence of solution composition and analyte characteristics on responsiveness to analysis with negative ion electrospray ionization mass spectrometry. The responses of a series of structurally diverse acidic molecules were compared in various solvents. Response was generally observed to be higher in methanol than acetonitrile and response for all analytes was poorer when water was mixed with the organic solvent. A positive correlation between negative ion ESI-MS response and log P was observed when either acetonitrile or methanol was used as the electrospray solvent. This result was expected because analytes with significant nonpolar character should be particularly responsive to ESI-MS analysis due to their higher affinity for electrospray droplet surfaces. It was also predicted that highly acidic analytes would be most responsive to analysis with negative ion ESI-MS due to their tendency to form negative ions. However, for the analytes studied here, acidity was found not to have a consistent influence on ESI-MS response. Many of the highly acidic molecules were quite polar and, consequently, were poorly responsive. Furthermore, the deprotonated molecular ion was detected for a number of molecules with very high pKa values, which would not be expected to form negative ions in the bulk solution. Ultimately, these results indicate that acidity is not a conclusive parameter for prediction of the relative magnitudes of negative ion ESI-MS response among a diverse series of analytes. Analyte polarity does; however, appear to be useful for this purpose.  相似文献   
4.
Light regulation of drug molecules has gained growing interest in biochemical and pharmacological research in recent years. In addition, a serious need for novel molecular targets of antibiotics has emerged presently. Herein, the development of a photocontrollable, azobenzene-based antibiotic precursor towards tryptophan synthase (TS), an essential metabolic multienzyme complex in bacteria, is presented. The compound exhibited moderately strong inhibition of TS in its E configuration and five times lower inhibition strength in its Z configuration. A combination of biochemical, crystallographic, and computational analyses was used to characterize the inhibition mode of this compound. Remarkably, binding of the inhibitor to a hitherto-unconsidered cavity results in an unproductive conformation of TS leading to noncompetitive inhibition of tryptophan production. In conclusion, we created a promising lead compound for combatting bacterial diseases, which targets an essential metabolic enzyme, and whose inhibition strength can be controlled with light.  相似文献   
5.
The p53 protein exerts fundamental roles in cell responses to a variety of stress stimuli. It has clear roles in controlling cell cycle, triggering apoptosis, activating autophagy and modulating DNA damage response. Little is known about the role of p53 in autophagy‐associated cell death, which can be induced by photoactivation of photosensitizers within cells. The photosensitizer 1,9‐dimethyl methylene blue (DMMB) within nanomolar concentration regimes has specific intracellular targets (mitochondria and lysosomes), photoinducing a typical scenario of cell death with autophagy. Importantly, in consequence of its subcellular localization, photoactive DMMB induces selective damage to mitochondrial DNA, saving nuclear DNA. By challenging cells having different p53 protein levels, we investigated whether p53 modulates DMMB/light‐induced phototoxicity and cell cycle dynamics. Cells lacking p53 activity were slightly more resistant to photoactivated DMMB, which was correlated with a smaller sub‐G1 population, indicative of a lower level of apoptosis. DMMB photosensitization seems to induce mostly autophagy‐associated cell death and S‐phase cell cycle arrest with replication stress. Remarkably, these responses were independent on the p53 status, indicating that p53 is not involved in either process. Despite describing some p53‐related responses in cells challenged by photosensitization, our results also provide novel information on the consequences of DMMB phototoxicity.  相似文献   
6.
7.
This review is devoted to the application of MS using soft ionization methods with a special emphasis on electrospray ionization, atmospheric pressure photoionization and matrix‐assisted laser desorption/ionization MS and tandem MS (MS/MS) for the elucidation of the chemical structure of native and modified lignins. We describe and critically evaluate how these soft ionization methods have contributed to the present‐day knowledge of the structure of lignins. Herein, we will introduce new nomenclature concerning the chemical state of lignins, namely, virgin released lignins (VRLs) and processed modified lignins (PML). VRLs are obtained by liberation of lignins through degradation of vegetable matter by either chemical hydrolysis and/or enzymatic hydrolysis. PMLs are produced by subjecting the VRL to a series of further chemical transformations and purifications that are likely to alter their original chemical structures. We are proposing that native lignin polymers, present in the lignocellulosic biomass, are not made of macromolecules linked to cellulose fibres as has been frequently reported. Instead, we propose that the lignins are composed of vast series of linear related oligomers, having different lengths that are covalently linked in a criss‐cross pattern to cellulose and hemicellulose fibres forming the network of vegetal matter. Consequently, structural elucidation of VRLs, which presumably have not been purified and processed by any other type of additional chemical treatment and purification, may reflect the structure of the native lignin. In this review, we present an introduction to a MS/MS top–down concept of lignin sequencing and how this technique may be used to address the challenge of characterizing the structure of VRLs. Finally, we offer the case that although lignins have been reported to have very high or high molecular weights, they might not exist on the basis that such polymers have never been identified by the mild ionizing techniques used in modern MS. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation. To account for any effects of autoclavation, a comparison was made with unsterilized media containing antibiotics. It was found that unsterilized washed plasma-assisted pretreated wheat straw (which contained antibiotics) was best suited for the production of xylanases (110 IU ml−1) and cellulases (0.5 filter paper units (FPU) ml−1). Addition of Avicel boosted enzyme titers with the highest cellulase titers (1.5 FPU ml−1) found with addition of 50 % w/w Avicel and with the highest xylanase production (350 IU ml−1) reached in the presence of 10 % w/w Avicel. Comparison with enzyme titers from other nonrefined feedstocks suggests that plasma pretreated wheat straw is a promising and suitable substrate for cellulase and hemicellulase production.  相似文献   
9.
Employing nanocrystals (NCs) as building blocks of porous aerogel network structures allows the conversion of NC materials into macroscopic solid structures while conserving their unique nanoscopic properties. Understanding the interplay of the network formation and its influence on these properties like size-dependent emission is a key to apply techniques for the fabrication of novel nanocrystal aerogels. In this work, CdSe/CdS dot/rod NCs possessing two different CdSe core sizes were synthesized and converted into porous aerogel network structures. Temperature-dependent steady-state and time-resolved photoluminescence measurements were performed to expand the understanding of the optical and electronic properties of these network structures generated from these two different building blocks and correlate their optical with the structural properties. These investigations reveal the influence of network formation and aerogel production on the network-forming nanocrystals. Based on the two investigated NC building blocks and their aerogel networks, mixed network structures with various ratios of the two building blocks were produced and likewise optically characterized. Since the different building blocks show diverse optical response, this technique presents a straightforward way to color-tune the resulting networks simply by choosing the building block ratio in connection with their quantum yield.  相似文献   
10.
Photoelectron angular distribution (PAD) in the laboratory frame for randomly oriented molecules is typically described by a single anisotropy parameter, the so-called asymmetry parameter. However, especially from a theoretical perspective, it is more natural to consider molecular photoionization by using a molecular frame. The molecular frame PADs (MFPADs) may be used to extract information about the electronic structure of the system studied. In the last decade, significant experimental efforts have been directed to MFPAD measurements. MFPADs are highly characterizing signatures of the final ionic states. In particular, they are very sensitive to the nature of the final state, which is embodied in the corresponding Dyson orbital. In our previous work on acetylacetone, a prototype system for studying intra-molecular hydrogen bond interactions, we followed the dynamics of the excited states involved in the photoexcitation–deexcitation process of this molecule. It remains to be explored the possibility of discriminating between different excited states through the MFPAD profiles. The calculation of MFPADs to differentiate excited states can pave the way to the possibility of a clear discrimination for all the cases where the recognition of excited states is otherwise intricate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号