首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
化学   25篇
数学   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2000年   1篇
  1998年   1篇
  1989年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Mechanism of the condensation reactions of methylglyoxal, phenylglyoxal and benzoylacetaldehyde with phenolic compounds have been discussed. It was observed that the reaction mechanisms changed depending on the type of the phenolic and also dicarbonyl compounds. While, methylglyoxal gave the angular methyl derivative of naphthofuraranonaphthofuran with 2‐naphthol, phenylglyoxal and its p‐chloro and p‐methoxy derivatives formed benzo[b]naphtho[2,1‐f]oxepine‐13‐ones. However, resorcinol behaved different and gave 2‐phenyl‐3‐(2,4‐dihydroxy)‐6‐hydroxy‐benzo[b]furans with phenylglyoxal derivatives. 2‐Phenyl‐4‐(2‐hydroxynaphmyl)‐4H‐naphtho[b]pyran was produced from the reaction of benzoylacetaldehyde and 2‐naphthol, but the reaction product was 3,9‐dihydroxy‐6‐phenyl‐6,12‐methano‐12H‐dibenzo[1,3]dioxocin when the same carbonyl compound reacted with resorcinol.  相似文献   
2.
Several reactions of 2-naphthol with 2-alkyl-2-hydroxymethylaldehydes have been investigated. Novel synthesis of 14-(hydroxymethyl)alkyldibenzo[a,j]xanthenes and 3,3-dimethyl-4-(2-hydroxy-1-naphthyl)benzo[f]chroman has been realized.  相似文献   
3.
4.
Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to form L-ornithine plus urea. Chiral L-amino acids bearing sulfonamide side chains have been synthesized in which the tetrahedral sulfonamide groups are designed to target bridging coordination interactions with the binuclear manganese cluster in the arginase active site. Syntheses of the amino acid sulfonamides have been accomplished by the amination of sulfonyl halide derivatives of (S)-(tert-butoxy)-[(tert-butoxycarbonyl)amino]oxoalkanoic acids. Amino acid sulfonamides with side chains comparable in length to that of L-arginine exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, S-(2-sulfonamidoethyl)-L-cysteine, has been determined at 2.8 A resolution. In the enzyme-inhibitor complex, the sulfonamide group displaces the metal-bridging hydroxide ion of the native enzyme and bridges the binuclear manganese cluster with an ionized NH(-) group. The binding mode of the sulfonamide inhibitor may mimic the binding of the tetrahedral intermediate and its flanking transition states in catalysis. It is notable that the ionized sulfonamide group is an excellent bridging ligand in this enzyme-inhibitor complex; accordingly, the sulfonamide functionality can be considered in the design of inhibitors targeting other binuclear metalloenzymes.  相似文献   
5.
Two new water soluble dendronized polymers (PLn) from acrylate Behera amine monomer of different molecular weights were successfully synthesized. The polymers were characterized by FTIR, NMR, GPC and DLS. Both GPC and DLS results indicated that these PLn have a remarkable tendency to form aggregates in solution that lead to apparent molecular weights that are much higher than their theoretical values, as well as large diameters in solution. However, the addition of any PLn to water did not cause any increase in viscosity up to concentrations of 1000 ppm. The possible interactions of PLn with the cationic surfactant CTAT were explored by solution rheometry. A synergistic viscosity enhancement was found by adding small amounts of dendronized PLn polymers to a CTAT solution composed of entangled worm-like micelles. The highest association tendency with CTAT was found for PL1 at the maximum polymer concentration before phase separation (i.e., 100 ppm). The solution viscosity at low-shear rates could be increased by an order of magnitude upon addition of 100 ppm of PL1 to a 20mM CTAT solution. For this mixture, the fluid obtained was highly structured and exhibited only shear thinning behavior from the smallest shear rates employed. These PL1/CTAT mixtures exhibited an improved elastic character (as determined by dynamic rheometry) that translated in a much longer value of the cross-over relaxation time and a pronounced thixotropic behavior which are indicative of a strong intermolecular interaction. In the case of the polymer with a higher theoretical molecular weight, PL2, its association with CTAT leads to an extraordinary doubling of solution viscosity with just 0.25 ppm polymer addition to a 20mM CTAT solution. However, such synergistic viscosity enhancement saturated at rather low concentrations (25 ppm) indicating an apparent lower solubility as compared to PL1, a fact that may be related to its higher molecular weight.  相似文献   
6.
This study covers the synthesis of conducting polyindole (PIN) homopolymer, poly(vinyl chloride)/polyindole (PVC/PIN) composites, and preparation of their freestanding films. PIN and composites were synthesized chemically by radicalic mechanism using FeCl3 as an initiator. Films of PVC and PVC/PIN composites were prepared by casting on glass Petri dishes. Mechanical properties of films were examined by stress–strain experiments. From FTIR spectra of polymers, it was revealed that polymerization reaction occurred by 2–3 mechanism. The conductivities of polymers at different temperatures were also measured by four‐probe technique and found in the range 10?4 to 10?5 S cm?1. Magnetic properties of the polymers were analyzed by Gouy scale measurements and were found that their conducting mechanisms are of polaron and bipolaron natures. Thermal properties of polymers were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) and found that they had shown adequate thermal stability. X‐ray diffraction (XRD) spectra showed the amorphous nature of the polymers. Scanning electron microscopy (SEM) was used for microstructural analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1290–1298, 2010  相似文献   
7.
8.
9.
Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. Chiral L-amino acids bearing aldehyde side chains have been synthesized in which the electrophilic aldehyde C=O bond is isosteric with the C=N bond of L-arginine. This substitution is intended to facilitate nucleophilic attack by the metal-bridging hydroxide ion upon binding to the arginase active site. Syntheses of the amino acid aldehydes have been accomplished by reduction, oxidation, and Wittig-type reaction with a commercially available derivative of L-glutamic acid. Amino acid aldehydes exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, (S)-2-amino-7-oxoheptanoic acid, has been determined at 2.2 A resolution. In the enzyme-inhibitor complex, the inhibitor aldehyde moiety is hydrated to form the gem-diol: one hydroxyl group bridges the Mn(2+)(2) cluster and donates a hydrogen bond to D128, and the second hydroxyl group donates a hydrogen bond to E277. The binding mode of the neutral gem-diol may mimic the binding of the neutral tetrahedral intermediate and its flanking transition states in arginase catalysis.  相似文献   
10.
Multiwalled carbon nanotubes (MWNTs) were functionalized with 2‐hydroxyethyl benzocyclobutene (BCB‐EO) through a Diels–Alder cycloaddition reaction. The functionalized MWNTs were utilized for the surface initiated ring opening (ROP) catalyzed and anionic polymerization of ε‐caprolactone (ε‐CL) and ethylene oxide (EO), respectively. The kinetics of the ROP of ε‐CL was monitored through thermogravimetric analysis (TGA) which revealed that the polymerization proceeds very fast as compared to that of EO and that both polymerizations could be controlled with time. 1H NMR, Raman and FTIR spectroscopy, TGA, DSC, and transmission electron microscopy (TEM) were employed for the characterization of these polymer/CNT hybrids. DSC results showed that a remarkable nucleation effect is produced by MWNTs that reduced the supercooling needed for crystallization of both PεCL and PEO. Furthermore, the isothermal crystallization kinetics of the grafted PεCL and PEO was substantially accelerated compared to the neat polymers. The strong impact on the nucleation and crystallization kinetics is attributed to the covalent MWNT‐polymer bonding. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4379–4390, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号