首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2023年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The synthesis and the luminescence features of three gold(I)-N-heterocyclic carbene (NHC) complexes are presented to study how the n-alkyl group can influence the luminescence properties in the crystalline state. The mononuclear gold(I)-NHC complexes, [( L1 )Au(Cl)] ( 1 ), [( L2 )Au(Cl)] ( 2 ), and [( L3 )Au(Cl)] ( 3 ) were isolated from the reactions between [(tht)AuCl] and corresponding NHC ligand precursors, [N-(9-acridinyl)-N’-(n-butyl)-imidazolium chloride, ( L1 .HCl)], [N-(9-acridinyl)-N’-(n-pentyl)-imidazolium chloride, ( L2 .HCl)] and [N-(9-acridinyl)-N’-(n-hexyl)-imidazolium chloride, ( L3 .HCl)]. Their single-crystal X-ray analysis reveals the influence of the n-alkyl groups on solid-state packing. A comparison of the luminescence features of 1 – 3 with n-alkyl substituents is explored. The molecules 1 – 3 depicted blue emission in the solution state, while the yellow emission (for 1 ), greenish-yellow emission (for 2 ), and blue emission (for 3 ) in the crystalline phase. This paradigm emission shift arises from n-butyl to n-pentyl and n-hexyl in the crystalline state due to the carbon-carbon rotation of the n-alkyl group, which tends to promote unusual solid packing. Hence n-alkyl group adds a novel emission property in the crystalline state. Density Functional Theory and Time-Dependent Density Functional Theory calculations were carried out for monomeric complex, N-(9-acridinyl)-N’-(n-heptyl)imidazole-2-ylidene gold(I) chloride and dimeric complex, N-(9-acridinyl)-N’-(n-heptyl)imidazole-2-ylidene gold(I) chloride to understand the structural and electronic properties.  相似文献   
2.
A modular approach for the synthesis of isolable crystalline Schlenk hydrocarbon diradicals from m-phenylene bridged electron-rich bis-triazaalkenes as synthons is reported. EPR spectroscopy confirms their diradical nature and triplet electronic structure by revealing a half-field signal. A computational analysis confirms the triplet state to be the ground state. As a proof-of-principle for the modular methodology, the 4,6-dimethyl-m-phenylene was further utilized as a coupling unit between two alkene motifs. The steric conjunction of the 4,6-dimethyl groups substantially twists the substituents at the nonbonding electron bearing centers relative to the central coupling m-phenylene motif. As a result, the spin delocalization is decreased and the exchange coupling between the two unpaired spins, hence, significantly reduced. Notably, 108 years after Schlenk's m-phenylene-bis(diphenylmethyl) synthesis as a diradical, for the first time we were able to isolate its derivative with the same spacer, i.e. m-phenylene, between two radical centers in a crystalline form.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号