首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   7篇
物理学   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The thermal behaviour, molecular orientation and lateral diffusion in the bilayered systems of dimyristoylphosphatidylcholine (DMPC) in the presence of poly(ethylene oxide) (PEO) were studied by NMR and DSC techniques, and it was found that PEO decreases the melting temperature (of vesicles and flat multibilayers) and affects the degree of orientation of DMPC molecules relative to the bilayer normal, but it does not influence the lateral diffusion of DMPC molecules.  相似文献   
2.
Polyanion‐coated lipid vesicles are proposed to have an appreciable potential for drug delivery because of their ability to control the permeability of lipid bilayers by environmental parameters such as pH and temperature. However, details of the interaction of this class of polymers with lipids and their mechanisms of induced permeability are still being debated. In this work, we applied 1H NOESY to study details of the interaction of polyacrylic acid (PAA) fractions of molecular weights 5 and 240 kDa with dimyristoylphosphatidylcholine vesicles. We showed that PAA of two different molecular masses modifies lipid bilayers increasing disorder and probability of close contact between polar and hydrophobic groups. PAA molecules adsorb near the interface of lipid bilayers but do not penetrate into the hydrophobic core of the bilayer and, thus, cannot participate in formation of transbilayer channels, proposed in earlier works. Increasing the molecular mass of PAA from 5 kDa to 240 kDa does not change the effect of PAA on the bilayer, although PAA240 forms a more compact structure (either intra‐molecular or inter‐molecular) and interacts more strongly with interface lipid protons. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
Cellular membranes of mammals are composed of a complex assembly of diverse phospholipids. Sphingomyelin (SM) and phosphatidylcholine (PC) are important lipids of eukaryotic cellular membranes and neuronal tissues, and presumably participate in the formation of membrane domains, known as "rafts," through intermolecular interaction and lateral microphase decomposition. In these two-dimensional membrane systems, lateral diffusion of lipids is an essential dynamic factor, which might even be indicative of lipid phase separation process. Here, we used pulsed field gradient nuclear magnetic resonance to study lateral diffusion of lipid components in macroscopically oriented bilayers composed of equimolar mixtures of natural SMs of egg yolk, bovine brain, bovine milk and dipalmitoylphosphatidylcholine (DPPC) with dioleoylphosphatidylcholine (DOPC). In addition, differential scanning calorimetry was used as a complementary technique to characterize the phase state of the lipid bilayers. In fully liquid bilayers, the lateral diffusion coefficients in both DOPC/DPPC and DOPC/SM systems exhibit mean values of the pure bilayers. For DOPC/SM bilayer system, this behavior can be explained by a model where most SM molecules form short-lived lateral domains with preferential SM-SM interactions occurring within them. However, for bilayers in the presence of their low-temperature gel phase, lateral diffusion becomes complicated and cannot simply be understood solely by a simple change in the liquid phase decomposition.  相似文献   
4.
We present a 31P NMR spectroscopy study of planar glass‐plate‐oriented multi‐bilayers of dimyristoylphosphatidylcholine (DMPC) with addition of polyethylene oxide (PEO). This work revealed the presence of a new component in the spectra that appeared only with addition of a small fraction of PEO (up to one PEO segment per dimyristoylphosphatidylcholine molecule) and disappeared when larger amounts of PEO were added. We explained this phenomenon as an effect of an inhomogeneous force field induced by the PEO molecules located at a certain depth in the lipid membrane interface region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Transverse relaxation and self-diffusion of molecules in a glyceryl monooleate (monoolein)-D2O system was studied using pulsed 1H NMR in a range of water concentrations from 10 to 30 wt % and a range of temperatures from 20 to 90°C. It was noted that self-diffusion is described by one or two self-diffusion coefficients, depending on the temperature and concentration of water, while NMR-relaxation has a complex form. It was determined that with a reduction in the transverse magnetization, a component that has a form similar to Gaussian and relaxation times of 70 to 250 μs is observed at certain temperatures and concentrations of water, confirming the formation of structures in which glyceryl monooleate molecules (GM) are characterized by anisotropic rotational mobility. It was demonstrated that the ranges of the concentrations of water and temperature in which this component is observed correspond to liquid-crystalline phase for lamellar and inverse hexagonal structural organizations of lipids, according to the state diagram obtained by X-ray diffraction. In the state diagram areas corresponding to micellar and cubic structures (characterized by the isotropic rotation of GM molecules in the time scale of NMR), multiexponential decays of magnetization with average relaxation times were noted in the range of 10 to 200 ms. A number of features were discovered with the use of NMR: specimens always contain structures with isotropic rotational mobility in the presence of structures characterized by anisotropic rotational mobility; a change in the fraction of the structures with anisotropic rotational mobility takes place slowly over 5–15 K, not abruptly. Our conclusions regarding the polymorphism of a GM-D2O system in the presence of anisotropic structures was confirmed by an analysis of the transverse NMR relaxation in an egg phosphatidylcholine-D2O system, for which the presence of only lamellar liquid-crystalline structure is confirmed by 31P NMR.  相似文献   
6.
We studied the influence of 5 kDa poly(acrylic acid) (PAA) on the phase state, thermal properties, and lateral diffusion in bilayered systems of dimyristoylphosphatidylcholine (DMPC) using (31)P NMR spectroscopy, differential scanning calorimetry (DSC), (1)H NMR with a pulsed field gradient, and (1)H nuclear Overhauser enhancement spectroscopy (NOESY). The presence of PAA does not change the lamellar structure of the system. (1)H MAS NOESY cross-peaks observed for the interaction between lipid headgroups and polyion protons demonstrated only surface PAA-biomembrane interaction. Small concentrations of PAA (up to ~4 mol %) lead to the appearance of a new lateral phase with a higher main transition temperature, a lower cooperativity, and a lower enthalpy of transition. Higher concentrations lead to the disappearance of measurable thermal effects. The lateral diffusion coefficient of DMPC and the apparent activation energy of diffusion gradually decreased at PAA concentrations up to around 4 mol %. The observed effects were explained by the formation of at least two types of PAA-DMPC lateral complexes as has been described earlier (Fujiwara, M.; Grubbs, R. H.; Baldeschwieler, J. D. J. Colloid Interface Sci., 1997, 185, 210). The first one is characterized by a stoichiometry of around 28 lipids per polymer, which corresponds to the adsorption of the entire PAA molecule onto the membrane. Lipid molecules of the complex are exchanged with the "pure" lipid bilayer, with the lifetime of the complex being less than 0.1 s. The second type of DMPC-PAA complex is characterized by a stoichiometry of 6 to 7 lipids per polymer and contains PAA molecules that are only partially adsorbed onto the membrane. A decrease in the DMPC diffusion coefficient and activation energy for diffusion in the presence of PAA was explained by the formation of a new cooperative unit for diffusion, which contains the PAA molecule and several molecules of lipids.  相似文献   
7.
Polyacrylic acid (PAA) is a promising polymer for engineering lipid-based drug-delivery vesicles. Its unique properties allow lowering drug dose and delivery the drug close to the site of its release. To design a successful delivery scheme, however, it is important to understand on the molecular scale how the polymer interacts with lipids under various conditions in the human body. Some aspects of the PAA-lipid interaction can be revealed using physical methods, such as differential scanning microscopy, nuclear magnetic resonance spectroscopy, NMR-diffusometry, and infrared spectroscopy. This work discusses the use of these techniques as well as the peculiarities of preparing vesicular and microscopically aligned PAA-lipid systems.   相似文献   
8.
Sphingomyelin (SM) is an important lipid of eukaryotic cellular membranes and neuronal tissues. We studied lateral diffusion in macroscopically oriented bilayers of synthetic palmitoylsphingomyelin (PSM) and natural sphingomyelins of egg yolk (eSM), bovine brain (bSM) and bovine milk (mSM) by pulsed field gradient NMR (PFG NMR) in the temperature range 45-60 °C. We found that the mean values of lateral diffusion coefficients (LDCs) of SMs are 1.9-fold lower compared with those of dipalmitoylphosphatidylcholine (DPPC), which is similar in molecular structure. This discrepancy could be explained by the characteristics of intermolecular SM interactions. The LDCs of different SMs differ: egg SM is most similar to PSM; both of them have a 10% higher LDC value compared with the other two natural SMs. Besides, all natural SMs show a complicated form of the spin-echo diffusion decay (DD), which is an indicator of a distribution of LDC values in bilayers. This peculiarity is explained by the broad distributions of hydrocarbon chain lengths of the natural SMs studied here, especially mSM and bSM. We confirmed the relationship between chain length and LDC in the bilayers by computer analysis of a set of (1)H NMR spectra obtained by scanning the value of the pulsed field gradient. There is a correlation between lower LDC values and SM molecules with longer acyl chains. The most probable mechanisms by which long-chain SM molecules decrease their lateral diffusion relative to the average value are protrusion into the other side of the bilayer or lateral separation into areas that diverge with their LDCs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号