首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
  国内免费   2篇
化学   29篇
力学   2篇
数学   1篇
物理学   10篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   7篇
  2011年   3篇
  2008年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1987年   2篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
1.
We describe the preparation of a compound whose molecules consist of two metal sandwich stands carrying tentacles with affinity to metal surfaces and holding an axle that carries a dipolar or a nonpolar rotator. The dipolar rotor exists as three pairs of enantiomers, rapidly interconverting at room temperature. When mounted on a gold surface, each molecule represents a chiral altitudinal rotor, with the rotator axle parallel to the surface. The surface-mounted rotor molecules are characterized by several spectroscopic and imaging techniques. At any one time, in about one-third of the dipolar rotors the rotator is free to turn and the direction of its dipole can be flipped by the electric field applied by an STM tip, as revealed by differential barrier height imaging. Molecular dynamics calculations suggest that electric field normal to the surface causes members of one pair of enantiomers to rotate unidirectionally.  相似文献   
2.
3.
Bulk superconducting samples of type Tl0.5Pb0.5Sr1.6Ba0.4CaCu2−x Ru x O7−δ, (Tl, Pb)/Sr-1212, with 0.0 ≤ x ≤ 0.525 were prepared by the conventional one-step solid-state reaction technique. The prepared samples were investigated using X-ray powder diffraction, electrical resistivity and electron paramagnetic resonance (EPR) measurements. Enhancement of the phase formation, superconducting transition temperature T c and hole carriers concentration P was observed up to x = 0.075. For x > 0.075, a reverse trend was observed. EPR spectra were measured at different temperatures (120–290 K) for all prepared samples. The number of spins N participating in the resonance and the paramagnetic susceptibility χ were calculated as a function of both Ru-content and temperature. N and χ increased as the Ru-content increased. A linear relationship between logN and 1/T was established, from which the activation energy E a was calculated as a function of the Ru-content. The temperature dependence of χ was fitted according to Curie–Weiss type of magnetic behavior. Curie constant C, Curie temperature θ, the effective magnetic moment μ and the electronic specific heat γ were estimated as a function of the Ru-content.  相似文献   
4.
ABSTRACT

Bayfol (PC-PBT blend ?lm) is a class of polymeric solid-state nuclear track detector which has a lot of applications in several radiation detection ?elds. It is a bisphenol-A polycarbonate PC blended with polybutylene terephthalate PBT. Bayfol/Palladium (PC-PBT/Pd) nanocomposite films have been deposited using the molding technique. It is worth mentioning that this report is almost the first one dealing with the topic of the changes of physical properties of Bayfol/Pd nanocomposite due to laser exposure. Samples from PC-PBT/Pd (5?wt%) nanocomposite were exposed to IR-pulsed laser of 5-W power, capable of producing 2000 pulses per second with pulse duration of 200?ns at 904?nm. The laser fluences were in the range 2–25?J/cm2. The resultant modi?cations in the exposed nanocomposite samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction (XRD), UV spectroscopy and color difference studies. The results indicate the proper dispersion of Pd nanoparticles in the PC-PBT matrix that causes a strong intermolecular interaction between Pd and PC-PBT, resulted in an increase in refractive index and the amorphous phase. Also, it is found that the laser exposure reduces the optical energy gap that could be attributed to the increase in structural disorder of the exposed PC-PBT/Pd nanocomposites due to crosslinking. Further, the color intensity ΔE, which is the color difference between the exposed samples and the non-exposed one, was increased with increasing the laser fluence, convoyed by a significant increase in the green and yellow color components.  相似文献   
5.
6.
Mulcahy SP  Li S  Korn R  Xie X  Meggers E 《Inorganic chemistry》2008,47(12):5030-5032
A synthetic route with two consecutive coordination chemistry steps on a solid support affords tris-heteroleptic ruthenium(II) polypyridyl complexes with high purity and in good yields. As an application we report the identification of a nanomolar acetylcholinesterase inhibitor from a small ruthenium complex library synthesized on Lanterns.  相似文献   
7.
合成了一系列碳数为十五和十四的倍半萜类蚜虫警戒素,并进行了生物活性测定,从中筛选有效化合物.  相似文献   
8.
羧甲基纤维素钠水凝胶的制备及其生物降解性研究   总被引:9,自引:0,他引:9  
用羧甲基纤维素钠(CMC—Na)制得了含水量高达98%的水凝胶,考察了防腐剂、交联剂、无机态氮素、有机态氮素、碳水化合物的加入量以及环境中pH值等因素对生物降解性的影响。结果表明:制备条件不同,水凝胶的生物降解性不同;环境中一定量铵根离子的存在有利于水凝胶的生物降解;在pH=5.2的环境中纤维素酶活性最高,降解程度最大。  相似文献   
9.
The synthesis of a pyrido[3,2-e]-2,10b-diaza-cyclopenta[c]fluorene-1,3-dione scaffold is disclosed, which was synthesized using a Suzuki cross-coupling reaction and an intramolecular Heck cyclization as the key steps. This heterocyclic system can serve as a bidentate ligand as demonstrated by the formation and structural analysis of a derived ruthenium complex. The new scaffold constitutes an interesting candidate for the development of organometallic protein kinase inhibitors.  相似文献   
10.
The synthesis of β-carbolines is a mature field, yet new methods are desirable to introduce new functionality onto the core scaffold. We describe the incorporation of an additional fused ring onto the β-carboline via a novel palladium-catalyzed, one-pot Sonogashira coupling/intramolecular [2+2+2] cyclization. This method generates three rings in one flask and produces an annulated β-carboline in 80% yield. A preliminary mechanistic study into the sequence of events is described, which confirms an unprecedented catalytic role for palladium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号