首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The potential for the material property improvement through the addition of carbon nanotubes (CNTs) in composite materials is often limited due to CNT agglomeration. In this work, Disperse Orange 3 (DO3) was investigated to determine its effectiveness in dispersing CNTs in a poly (lactic acid) (PLA) matrix. First, adsorption studies of DO3 onto CNTs were performed to determine the appropriate amount of DO3 to add so that the CNT surface will be nearly saturated with DO3 while limiting the excess DO3 dissolved in the polymer. The resultant improvements in the mechanical properties were determined via nanoindentation. Highly stable dispersion of CNTs in tetrahydrofuran with DO3 was observed 72 hours after sonication. Scanning electron microscopy confirmed that DO3‐functionalized CNTs were able to separate and disperse well inside of the PLA matrix. Addition of DO3 to the nanocomposite resulted in an increase in the glass transition temperature and crystallinity of the composite due to the more effective dispersion of the nanofiller which serves as a nucleation agent. The CNTs treated with DO3 also increased the elastic modulus and hardness of the composite compared to neat PLA and untreated PLA‐CNT composites. From this study, DO3 was demonstrated to be an effective dispersing agent in the solvent and the PLA matrix which allowed for enhanced crystallization and improved nanomechanical properties in the resultant composite.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号