首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   7篇
化学   45篇
数学   1篇
物理学   3篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
2.
Molecular-based Fluorescent Organic Nanoparticles (FONs) are versatile light-emitting nano-tools whose properties can be rationally addressed by bottom-up molecular engineering. A challenging property to gain control over is the interaction of the FONs’ surface with biological systems. Indeed, most types of nanoparticles tend to interact with biological membranes. To address this limitation, we recently reported on two-photon (2P) absorbing, red to near infrared (NIR) emitting quadrupolar extended dyes built from a benzothiadiazole core and diphenylamino endgroups that yield spontaneously stealth FONs. In this paper, we expand our understanding of the structure-property relationship between the dye structure and the FONs 2P absorption response, fluorescence and stealthiness by characterizing a dye-related series of FONs. We observe that increasing the strength of the donor end-groups or of the core acceptor in the quadrupolar (D-π-A-π-D) dye structure allows for the tuning of optical properties, notably red-shifting both the emission (from red to NIR) and 2P absorption spectra while inducing a decrease in their fluorescence quantum yield. Thanks to their strong 1P and 2P absorption, all FONs whose median size varies between 11 and 28 nm exhibit giant 1P (106 M−1.cm−1) and 2P (104 GM) brightness values. Interestingly, all FONs were found to be non-toxic, exhibit stealth behaviour, and show vanishing non-specific interactions with cell membranes. We postulate that the strong hydrophobic character and the rigidity of the FONs building blocks are crucial to controlling the stealth nano-bio interface.  相似文献   
3.
4.
5.
Herein we electrochemically and selectively extract Ti from the MAX phase Ti2SC to form carbon/sulfur (C/S) nanolaminates at room temperature. The products are composed of multi‐layers of C/S flakes, with predominantly amorphous and some graphene‐like structures. Covalent bonding between C and S is observed in the nanolaminates, which render the latter promising candidates as electrode materials for Li‐S batteries. We also show that it is possible to extract Ti from other MAX phases, such as Ti3AlC2 , Ti3SnC2 , and Ti2GeC, suggesting that electrochemical etching can be a powerful method to selectively extract the “M” elements from the MAX phases, to produce “AX” layered structures, that cannot be made otherwise. The latter hold promise for a variety of applications, such as energy storage, catalysis, etc.  相似文献   
6.
7.
A user‐friendly Ni‐catalyzed reductive carboxylation of benzylic C?N bonds with CO2 is described. This procedure outperforms state‐of‐the‐art techniques for the carboxylation of benzyl electrophiles by avoiding commonly observed parasitic pathways, such as homodimerization or β‐hydride elimination, thus leading to new knowledge in cross‐electrophile reactions.  相似文献   
8.
Herein, we report a user‐friendly and metal‐free UV‐A light mediated borocyclopropanation of styrenes using continuous flow technology. A broad range of styrene derivatives can be cyclopropanated in good yields within 1 h residence time to produce highly valuable cyclopropylboronate esters with modest to good diastereoselectivities. The reaction is also applicable to α‐substituted styrenes. Mechanistic studies support a photoredox process during which xanthone, a well‐known organic photosensitizer, can easily reach a photoexcited state that is available for both an oxidative and a reductive quenching.  相似文献   
9.
In this study, we investigated further the large increases in retention with pressure that we observed previously in RP-LC especially for ionised solutes. These findings were initially confirmed on a conventional silica C18 column, which gave extremely similar results to the hybrid C18 phase originally used. Large increases in retention factor of ∼50% for a pressure increase of 500 bar were also shown for high MW polar but neutral solutes. However, experiments with the same bases in ionised and non-ionised forms suggest that somewhat greater pressure-induced retention increases are found for ionised solutes. Retention increases with pressure were found to be considerably smaller for a C1 column compared with a C18 column; decreases in retention with increasing pressure were noted for ionised bases when using a bare silica column in the hydrophilic interaction chromatography (HILIC) mode. These observations are consistent with the partial loss of the solvation layer in RP-LC as the solute is forced into the hydrophobic environment of the stationary phase, and consequent reduction in the solute molar volume, while the water layer on the surface of a HILIC packing increases the hydration of a basic analyte. Finally, retention changes with pressure in RP-LC can also be observed at a mobile phase pH close to the solute pKa, due to changes in pKa with pressure. However, this effect has no influence on the results of most of our studies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号