首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   6篇
物理学   5篇
  2019年   1篇
  2018年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2007年   2篇
  1992年   1篇
  1979年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
Abstract— The release of orthophosphate from oxygen-saturated aqueous solutions of disodium phenyl phosphate by near-UV and visible light was enhanced in the presence of the sensitizing dyes methylene blue, rose bengal and thionine. The reaction was accompanied by the bleaching of these dyes. In the absence of oxygen, under nitrogen, the photodecomposition was very much slower. In deuterium oxide as the solvent, the dye-sensitized photodecomposition was 9 times faster than in normal water. This result suggests that singlet oxygen is probably the reactive species in the dye-sensitized reaction.  相似文献   
2.
Survival of high-energy cosmic rays (HECRs) against gravitational Cherenkov losses is shown not to cast strong constraints on modified Newtonian dynamics (MOND) theories that are compatible with general relativity (GR): theories that coincide with GR for accelerations ?a(0) (a(0) is the MOND constant). The energy-loss rate, E, is many orders smaller than those derived in the literature for theories with no extra scale. Modification to GR, which underlies E, enters only beyond the MOND radius of the particle: r(M)=(Gp/ca(0))(1/2). The spectral cutoff, entering E quadratically, is thus r(M)(-1), not k(dB)=p/?. Thus, E is smaller than published rates, which use k(dB), by a factor ~(r(M)k(dB))(2)≈10(39)(cp/3×10(11) Gev)(3). Losses are important only beyond D(loss)≈q?(M), where q is a dimensionless factor, and ?(M)=c(2)/a(0) is the MOND length, which is ≈2π times the Hubble distance.  相似文献   
3.
Molecular dynamics simulations are employed to demonstrate that adhesive contact formation through classical jump to contact is mediated by extensive dislocation activity in metallic nanoparticles. The dislocations generated during jump to contact are completely annihilated by the completion of the adhesive contact, leaving the nanoparticles dislocation-free. This rapid and efficient jump to contact process is pseudoelastic, rather than purely elastic or plastic.  相似文献   
4.
We report a method to incorporate dislocation climb controlled by bulk diffusion in a three-dimensional discrete dislocation dynamics (DDD) simulation for fcc metals. In this model we couple the vacancy diffusion theory to the DDD in order to obtain the climb rate of the dislocation segments. The capability of the model to reproduce the motion of climbing dislocations is examined by calculating several test-cases of pure climb-related phenomena and comparing the results with existing analytical predictions and experimental observations. As test-cases, the DDD is used to study the activation of Bardeen–Herring sources upon the application of an external stress or under vacancy supersaturation. Loop shrinkage and expansion due to vacancy emission or absorption is shown to be well described by our model. In particular, the model naturally describes the coarsening of a population of loops having different sizes.  相似文献   
5.
Cross-slip is a thermally activated process by which a screw dislocation changes its slip plane. Understanding and modelling the activation barrier of the cross-slip process as a free-energy barrier that depends on the stress conditions at the vicinity of the dislocation is crucial. In this work, we employ the line-tension model for the cross-slip of screw dislocations in face-centred cubic (FCC) metals in order to calculate the energy barrier when both Escaig stresses are applied on the primary and cross-slip planes and Schmid stress is applied on the cross-slip plane. We propose a closed-form expression for the activation energy for cross-slip in a large range of stresses, without any fitting parameters. The results of the proposed model are in good agreement with previous numerical results and atomistic simulations. We also show that, when Schmid stress is applied on the cross-slip plane, the energy barrier is decreased, and in particular, cross-slip can occur even when the Escaig stress in the primary plane is smaller than that on the cross-slip plane. The proposed closed-form expression for the activation energy can be easily implemented in dislocation dynamics simulations, owing to its simplicity and universality. This will allow cross-slip to be more accurately related to macroscopic plasticity.  相似文献   
6.
Manipulation for simplifying or increasing the observed charge state distributions of proteins can be highly desirable in mass spectrometry experiments. In the present work, we implemented a vapor introduction technique to an Agilent Jet Stream ESI (Agilent Technologies, Santa Clara, CA, USA) source. An apparatus was designed to allow for the enrichment of the nitrogen sheath gas with basic vapors. An optical setup, using laser-induced fluorescence and a pH-chromic dye, permits the pH profiling of the droplets as they evaporate in the electrospray plume. Mechanisms of pH droplet modification and its effect on the protein charging phenomenon are elucidated. An important finding is that the enrichment with basic vapors of the nitrogen sheath gas, which surrounds the nebulizer spray, leads to an increase in the spray current. This is attributed to an increase in the electrical conductivity of water-amine enriched solvent at the tip exit. Here, the increased current results in a generation of additional electrolytically produced OH(-) ions and a corresponding increase in the pH at the tip exit. Along the electrospray plume, the pH of the droplets increases due to both droplet evaporation and exposure to basic vapors from the seeded sheath gas. The pH evolution in the ESI plume obtained using pure and basic seeded sheath gas was correlated with the evolution of the charge state distribution observed in mass spectra of proteins, in the negative ion mode. Taking advantage of the Agilent Jet Stream source geometry, similar protein charge state distributions and ion intensities obtained with basic initial solutions, can be obtained using native solution conditions by seeding the heated sheath gas with basic vapors.  相似文献   
7.
The transition between the Cassie and Wenzel wetting regimes has been observed under vertical vibration of a water drop placed on a rough micrometrically scaled polymer pattern. The transition takes place under the constant force per unit length of the triple contact line, not under constant pressure. A study of the vibrating drop deposited on the rough surface supplied valuable information concerning the Cassie-Wenzel wetting transition.  相似文献   
8.
Cross-slip is a dislocation mechanism by which screw dislocations can change their glide plane. This thermally activated mechanism is an important mechanism in plasticity and understanding the energy barrier for cross-slip is essential to construct reliable cross-slip rules in dislocation models. In this work, we employ a line tension model for cross-slip of screw dislocations in face-centred cubic (FCC) metals in order to calculate the energy barrier under Escaig stresses. The analysis shows that the activation energy is proportional to the stacking fault energy, the unstressed dissociation width and a typical length for cross-slip along the dislocation line. Linearisation of the interaction forces between the partial dislocations yields that this typical length is related to the dislocation length that bows towards constriction during cross-slip. We show that the application of Escaig stresses on both the primary and the cross-slip planes varies the typical length for cross-slip and we propose a stress-dependent closed form expression for the activation energy for cross-slip in a large range of stresses. This analysis results in a stress-dependent activation volume, corresponding to the typical volume surrounding the stressed dislocation at constriction. The expression proposed here is shown to be in agreement with previous models, and to capture qualitatively the essentials found in atomistic simulations. The activation energy function can be easily implemented in dislocation dynamics simulations, owing to its simplicity and universality.  相似文献   
9.
The transition between the Cassie and Wenzel wetting regimes has been observed under horizontal vibrations of a water drop placed on the rough micrometrically scaled polymer pattern. The observed transition has a distinct resonance character. The resonance frequencies as established experimentally coincide with the calculated eigenfrequencies of capillary-gravity standing waves on the drop surface. The resonance Cassie-Wenzel transition is related to the displacement of the triple line caused by both the inertia force and the increase in the Laplace pressure. This strengthens the idea that the Cassie-Wenzel wetting transition is most likely a 1D affair stipulated by the triple-line behavior. The study of the vibrated drop deposited on the rough surface supplied valuable information concerning the Cassie-Wenzel wetting transition.  相似文献   
10.
The use of yttria-stabilized zirconia (YSZ) electrodes of the type Hg/HgO/ZrO2(Y2O3)/H+, for measuring pH in aqueous solutions at high subcritical (150374°C) is reviewed. The construction and operation of the YSZ and reference electrodes employed in these studies are described and their application in measuring the pH of a variety of technologically-important aqueous system is discussed. We show that the YSZ electrode is thermodynamically viable at temperatures into the supercritical region, and that it is a primary pH sensor in that calibration is not necessary, provided that the activity of water is known. However, highly accurate pH measurements at high subcritical and supercritical temperatures will require the development of more accurate reference electrodes.Presented at the Second International Symposium on Chemistry in High Temperature Water, Provo, UT, August 1991.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号