首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   1篇
化学   50篇
晶体学   1篇
力学   8篇
数学   19篇
物理学   54篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2013年   38篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1996年   10篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1981年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1968年   3篇
  1961年   1篇
  1951年   1篇
  1928年   1篇
排序方式: 共有132条查询结果,搜索用时 756 毫秒
1.
The standardized mutual active and reactive sound power of a clamped plate, representing the energy aspect of the reciprocal interactions of two different in vacuo modes, has been computed. It was assumed that the vibrations are axisymmetric, elastic and time harmonic, the plate's transverse deflection is small as compared with the plate's size, and that the vibration velocity is small as compared with the acoustic wavenumber generated. The Kirchhoff-Love theory of a perfectly elastic plate was used. The integral formulae for the mutual sound power were transformed into their Hankel representations which made possible their subsequent computation. A closed path integral was used to express the integral in its Hankel representation to compute the mutual active sound power. The asymptotic stationary phase method was used to compute the two magnitudes, i.e., the mutual active and reactive sound power. The results obtained are the asymptotic formulae valid for the acoustically fast waves. The oscillating as well as the non-oscillating terms have been identified in the formulae to make possible their further separate analysis. The availability of the asymptotic formulae makes possible some fast numerical computations of the mutual sound power. Moreover, the formulae presented herein, together with those for the individual modes known from the literature, make a complete basis for further computations of the total sound power of the plate's damped and forced vibrations in fluid.  相似文献   
2.
The ability of surface passivation to enhance the photoluminescence (PL) emission of Si nanocrystals in SiO2 has been investigated. Silicon precipitation in implanted samples takes place in a time scale of few minutes at 1100°C. For longer annealing at the same temperature, the PL intensity of the Si nanocrystals increases and eventually reaches saturation, while it correlates inversely with the amount of Si dangling bonds at the Si–SiO2 interface (Pb centers), as measured by electron spin resonance. This combined behavior is independent on the silica matrix properties, implantation profiles and annealing atmosphere and duration. The observation that the light emission enhancement is directly related to the annealing of Pb centers is confirmed by treatment in forming gas. This mild hydrogenation at much lower temperature (450°C) leads to a complete passivation of the Pb defects, increasing at the same time the PL yield and the lifetime.  相似文献   
3.
4.
5.
6.
7.
Conformational properties of polymers, such as average dihedral angles or molecular alpha-helicity, display a rather weak dependence on the detailed arrangement of the elementary constituents (atoms). We propose a computer simulation method to explore the polymer phase space using a variant of the standard multicanonical method, in which the density of states associated to suitably chosen configurational variables is considered in place of the standard energy density of states. This configurational density of states is used in the Metropolis acceptance/rejection test when configurations are generated with the help of a hybrid Monte Carlo algorithm. The resulting configurational probability distribution is then modulated by exponential factors derived from the general principle of the maximal constrained entropy by requiring that certain average configurational quantities take preassigned (possibly temperature dependent) values. Thermal averages of other configurational quantities can be computed by using the probability distributions obtained in this way. Moments of the energy distribution require an extra canonical sampling of the system phase space at the desired temperature, in order to locally thermalize the configurational degrees of freedom. As an application of these ideas we present the study of the structural properties of two simple models: a bead-and-spring model of polyethylene with independent hindered torsions and an all-atom model of alanine and glycine oligomers with 12 amino acids in vacuum.  相似文献   
8.
This paper presents a simple, self‐contained account of Gårding's theory of hyperbolic polynomials, together with a recent convexity result of Bauschke‐Güler‐Lewis‐Sendov and an inequality of Gurvits. This account begins by establishing some new results. The first concerns the existence of a pointwise arrangement of the eigenvalues so that they become global real analytic functions. The second asserts that the associated “branches” are independent of the choice of hyperbolic direction. © 2013 Wiley Periodicals, Inc.  相似文献   
9.
This review emphasizes the breadth of metallic and metallic-like polymers evaluated as to thermal properties. Techniques usefully applied to particular systems are noted with the aim of suggesting their application to other systems.  相似文献   
10.
Multireference configuration interaction (MRCI) and complete active space second-order perturbation theory (CASPT2) calculations are performed on Fe2 and Fe? 2. Although it is not possible to definitively identify the ground states of Fe2 and Fe? 2, the calculations suggest that the ground state of Fe? 2 in 8Σ? u derived from 3d132 g2 u and that the states observed in photodetachment are the 9Σ? g and 7Σ? g states with a 3d132 g1 u occupation, but that the ground state of Fe2 is 7Δu(3d142 g) and is not observed in the photo-detachment spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号