首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   14篇
数学   1篇
物理学   16篇
  2019年   1篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1999年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1982年   1篇
排序方式: 共有31条查询结果,搜索用时 39 毫秒
1.
We have previously used chlorophyll fluorescence measurements at Fmax conditions (i.e. with Photosystem II electron acceptor QA reduced) to monitor the action of 9,10-anthraquinones on photosynthetic electron transport in plant chloroplasts. The present investigation employs two additional techniques to characterize the extent of electron transport inhibition induced by the addition of substituted anthraquinones to the suspending medium of spinach chloroplasts. Results are presented for spectrophotometric assays of the rate of electron transfer to an exogenous electron acceptor, 2,6-dichloroindophenol (DCIP) and for electrochemical determinations of the rate of oxygen evolution in anthraquinone-treated chloroplasts. In general, amino-substituted anthraquinones are ineffective inhibitors, maintaining electron transfer rates to DCIP at levels ranging from 50 to 90% of normal rates and yielding rates of O2 evolution averaging at 70% of the rate in untreated chloroplasts. In contrast, hydroxy-substituted anthraquinones efficiently block Photosystem II electron transport, resulting in low rates of DCIP photoreduction ranging from 0 to 20% of normal values and reducing O2 evolution rates to an average of 30% of the rate observed for untreated chloroplasts. Relative rates of DCIP photoreduction for anthraquinone-treated chloroplasts show a strong linear correlation with the reported relative Fmax chlorophyll fluorescence intensities. Relative O2 evolution rates are observed to correlate with the Stern-Volmer fluorescence quenching parameter Ksv. We suggest that slight differences in the extent of inhibitory activity of an anthraquinone as measured by the three techniques are consistent with certain known Photosystem II heterogeneities. The similarities in relative rankings of inhibitory effects for the 9, 10-anthraquinones, however, demonstrate that the three techniques employed (measurements of Fmax chlorophyll fluorescence, DCIP photoreduction rates, and O2 evolution rates) are alternative assays of anthraquinone-induced Photosystem II electron transport inhibition.  相似文献   
2.
3.
Catalytic activity of Os(VIII) in the oxidation of some twenty organic sulfides with sodium salt of N-chlorobenzenesulfonamide (CAB) has been investigated in alkaline (pH8.7) t-butanol–water (1:1 v/v) medium. Significant retarding influence of [OH] on the reactivity is exhibited. The catalysed reaction is strongly accelerated in the presence of Hg(II). Imperfections are observed in the linear Hammett relationship in the case of –NO2 substituents.  相似文献   
4.
Nano titanium dioxide (nTiO2), generally considered to be toxicologically inert, is manufactured in large quantities and extensively applied in consumer products. The small size and large surface area endow them with an active group or intrinsic toxicity. Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of (bio) chemical applications. One of the great advantages of this technique is its ability to provide information on the concentration, structure and interaction of biochemical molecules in their microenvironments within intact cells and tissues, non-destructively. Zebrafish (Danio rerio), one of the most important vertebrate model organisms used in developmental biology, are increasingly used in biomedical research, particularly as a model of human disease. In the present work, an attempt is made to study the effect of titanium dioxide, both nano and bulk, on the microenvironment of the liver tissues of Zebrafish using FT-Raman spectroscopy. The results of the present study suggest that TiO2 exposure demonstrate a marked influence on the microenvironments of the liver tissues of Zebrafish. A shift to a higher wavenumber and an increase in the intensity of the band at ∼1087 cm−1 in the TiO2 exposed tissues suggest that some of the conformational changes resulting from the alkali recovery process takes place due to TiO2 exposure. The decreased intensity ratio (I3220/I3400) observed in the titanium-exposed tissues suggests a decreased water domain size, which could be interpreted in terms of weaker hydrogen-bonded molecular species of water in the TiO2 exposed tissues. The observed shift of COO bands to higher frequencies shows the disruption of salt bridges as a result of a change in the oppositely charged partners and due to the enhanced random coil conformation. The variation in the intensity ratio of the tyrosyl doublet (I858/I825) indicates variation in the hydrogen bonding of the phenolic hydroxyl group due to TiO2 exposure. The results further suggest that the microenvironments are greatly altered due to titanium nano exposure when compared to titanium bulk. In conclusion, the results indicate that FT-Raman spectroscopy might be a useful tool for rapid assessment of nano particle biological interactions.  相似文献   
5.
The design of an ion mobility source developed to couple to a guided ion beam tandem mass spectrometer is presented. In these exploratory studies, metal ions are created continuously by electron ionization of the volatile hexacarbonyls of the three group 6 transition metals. These ions are focused into a linear hexapole ion trap, which collects the ions and then creates high intensity pulses of ions, avoiding excessive ion losses resulting from the low duty cycle of pulsed operation. The ion pulses are injected into a six-ring drift cell filled with helium where ions having different electronic configurations can separate because they have different ion mobilities. Such separation is observed for chromium ions and compares favorably with the pioneering work of Kemper and Bowers (J. Phys. Chem.1991, 95, 5134). The results are then extended to Mo(+) and W(+), which also show efficient configuration separation. The source conditions needed for high intensities and good configuration separation are discussed in detail and suggestions for further improvements are also provided.  相似文献   
6.
An electrospray ionization (ESI) source developed for use with the guided ion beam tandem mass spectrometer (GIBMS) is described. For accurate determination of thermochemistry using threshold collision-induced dissociation (TCID), it is essential that any source produces ions with four exacting characteristics: (1) high intensity, (2) stable signal, and well-defined energies both (3) kinetic, and (4) internal. To accomplish these objectives, the ions generated by the electrospray are collected using a radio frequency electrodynamic ion funnel and are then transferred into a hexapole ion guide where they are thermalized and subsequently passed into higher-vacuum regions for analysis. The resulting ion intensities using this source can exceed 10(6) ions/s. Stable beams (<10% variation in signal) can be generated over multiple hours. The kinetic energy distribution of ions emerging from this source has been shown to be well described by a Gaussian distribution with a full width half maximum (FWHM) of about 0.1-0.2 eV in the laboratory frame of reference. Finally, TCID results for ions generated with this source show excellent agreement with previously reported threshold values for ions generated using a variety of sources and experimental methodologies. This confirms that internal energies of the ions are well described by a Maxwell-Boltzmann distribution at room temperature.  相似文献   
7.
Current methods for stable oxygen isotopic (delta (18)O) analysis of soil water rely on separation of water from the soil matrix before analysis. These separation procedures are not only time consuming and require relatively large samples of soil, but also have been shown to introduce a large potential source of error. Current research at Queen's University Belfast is focused on using direct equilibration of CO(2) with the pore water to eliminate this extraction step using the automated Multiprep system and a Micromass Prism III isotope ratio mass spectrometer (IRMS). The findings of this research indicate the method is less time consuming, more reliable, and reproducible to within accepted limits (+/-0.1% per thousand delta (18)O). In this study the direct equilibration method is used to analyse delta (18)O tracer profiles in the unsaturated zone of field soils, concurrently with chloride tracer profiles, which can be used to assess infiltration rates and mechanisms through the unsaturated zone. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
8.
A suite of keV polyatomic or 'cluster' projectiles was used to bombard unoxidized and oxidized self-assembled monolayer surfaces. Negative secondary ion yields, collected at the limit of single ion impacts, were measured and compared for both molecular and fragment ions. In contrast to targets that are orders of magnitude thicker than the penetration range of the primary ions, secondary ion yields from polyatomic projectile impacts on self-assembled monolayers show little to no enhancement when compared with monatomic projectiles at the same velocity. This unusual trend is most likely due to the structural arrangement and bonding characteristics of the monolayer molecules with the Au(111). Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
9.
The paper presents the changes in the thermal properties of control, arsenic exposed and DMSA treated Labeo rohita bones by using thermo analytical techniques. The result shows that the mass loss due to the thermal decomposition occurs in three distinct steps due to loss of water, organic and inorganic materials. The arsenic exposed bones present a different thermal behaviour compared to the control bones. The residue masses are increased due to arsenic exposure, while the DMSA treatment reduces the residue mass level. These thermal characteristics can be used as a qualitative method to check the metal accumulation in samples.  相似文献   
10.
Absolute bond dissociation energies of water to sodium glycine cations and glycine to hydrated sodium cations are determined experimentally by competitive collision-induced dissociation (CID) of Na+Gly(H2O)x, x = 1–4, with xenon in a guided ion beam tandem mass spectrometer. The cross sections for CID are analyzed to account for unimolecular decay rates, internal energy of reactant ions, multiple ion–molecule collisions, and competition between reaction channels. Experimental results show that the binding energies of water and glycine to the complexes decrease monotonically with increasing number of water molecules. Ab initio calculations at four different levels show good agreement with the experimental bond energies of water to Na+Gly(H2O)x, x = 0–3, and glycine to Na+(H2O), whereas the bond energies of glycine to Na+(H2O)x, x = 2–4, are systematically higher than the experimental values. These discrepancies may provide some evidence that these Na+Gly(H2O)x complexes are trapped in excited state conformers. Both experimental and theoretical results indicate that the sodiated glycine complexes are in their nonzwitterionic forms when solvated by up to four water molecules. The primary binding site for Na+ changes from chelation at the amino nitrogen and carbonyl oxygen of glycine for x = 0 and 1 to binding at the C terminus of glycine for x = 2–4. The present characterization of the structures upon sequential hydration indicates that the stability of the zwitterionic form of amino acids in solution is a consequence of being able to solvate all charge centers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号