首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
化学   2篇
力学   2篇
物理学   2篇
  2015年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
This article provides critical examinations of two mathematical models that have been developed in recent years to describe the impact of nano-layering on the enhancement of the effective thermal conductivity of nanofluids. Discrepancy between the two models is found to be an artefact of an incorrect derivation used in one of the models. With correct formulation, both models predict effective thermal conductivity enhancements that are not significantly greater than those predicted by classical Maxwell theory. This study indicates that nano-layering by itself is unable to account for the effective thermal conductivity enhancements observed in nanofluids.  相似文献   
2.
Fears of climate change and increasing concern over the global warming have prompted a search for new, cleaner methods for electricity power generation. Technologies based on utilising biomass are attracting much attention because biomass is considered to be CO2 neutral. Co-firing of biomass fuels with coal, for example, is presently being considered as a mean for reducing the global CO2 emissions. Biomass is also applied in thermal conversion processes to produce fuels with higher calorific values and adsorbents. In any case, thermal decomposition is essential stage where volatiles and tars are evolved followed by consequent heats of reactions. In this work sawdust biomass samples were selected in order to study their thermal conversion behaviour. Heats of decomposition for each sample were measured during continuous heating at a prescribed heating rate under inert atmospheric conditions. The decomposition generally commenced in all samples at 150°C and was completed at 460°C in a series of endo and exothermic reactions influenced by its lignin and cellulosic content. Single biomass sample was subjected to heating rates ranging from 10 to 1000°C min-1 and the effect of heating rate on decomposition was studied. The origin of reactions for each thermal sequence is herein discussed in detail. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
This brief communication provides a response to Murshed et al. (J Nanopart Res 12:2007–2010, 2010). We acknowledge that three of the equations in our original article (Doroodchi et al. J Nanopart Res 11:1501–1507, 2009) contained minor typographical errors. However, we confirm that these misprinted equations have no bearing on the results presented within that article. In addition, we would like to clarify that we do not challenge the methodology of Leong et al. (J Nanopart Res 8:245–254, 2006). Instead, we repeated their analysis using a more general form for the temperature field with continuity imposed across the particle–nanolayer–liquid interfaces and found that the solution reduces to the Renovated-Maxwell model.  相似文献   
4.
We present a quantum chemical investigation of benzofuran and cholorobenzofuran formation mechanisms during the combustion of 1,3‐dichloropropene. Density functional theory and Gaussian‐n thermochemical methods are used to propose detailed mechanistic reaction pathways. These calculations indicate that oxidation of phenylvinyl radical intermediates and subsequent ring closure are key mechanistic pathways in the formation of benzofuran and chlorobenzofuran. Thermochemical and kinetic parameters presented herein will assist in further elucidation of dioxin formation mechanisms from thermolyses of hydrocarbon moieties. © 2015 Wiley Periodicals, Inc.  相似文献   
5.
As part of a larger project aiming at development of a miniaturized hydrogen generator for small mobile/onboard fuel cell applications, a series of experiments was conducted on a novel micro-reactor to examine the effectiveness of its design in promoting the mixing of reactant agents. The reactor is essentially a tubular vessel fitted with a multi-holed baffle plate mounted on a central tube. The mixing phenomenon within the micro-reactor was studied using the micro-PIV (micro-particle image velocimetry) flow visualization technique. Experiments were conducted on a 1:1 scale replica of the reactor. Results indicate that the application of the multi-holed baffle plate considerably improves the mixing performance of the reactor when compared with a simpler co-axial jet tubular reactor. However, the geometrical characteristics of the baffle plate and central tube are found to have dramatic impacts upon the flow structure and mixing patterns within the reactor. Hence, the optimization of the reactor geometry is required to achieve the desirable mixing performance. For the range of Reynolds numbers studied here, the optimum reactor geometry is achieved when the central tube and baffle holes are of similar diameters and baffle holes are located half way between the stream-wise axis and the reactor wall.  相似文献   
6.
Gravity currents are important physical phenomena which have direct implications in a wide range of physical situations including geophysical processes, air conditioning, and building fires where they are responsible for the transport of smoke and hot gases, particularly, along long corridors. Despite recent progress in the field, relatively little is known about the structure of gravity currents under conditions pertinent to building fires. In particular, the impact of heat transfer at boundaries is not well understood. The present investigation is an attempt to address this shortcoming by studying the turbulent structure of gravity currents under both adiabatic and isothermal boundary conditions. For this purpose, a series of experiments was conducted in a rectangular tank with turbulent underflows. Laser Doppler velocimetry was employed to quantify the velocity field and associated turbulence parameters. Experimental results indicated that the mean flow within the head region primarily consisted of an undiluted large single vortex which rapidly mixed with the ambient flow in the wake region. Flows with isothermal wall boundary conditions showed three-dimensional effects whereas those with adiabatic walls exhibited two-dimensional behaviour. Turbulence was found to be highly inhomogeneous and its distribution was governed by the location of large eddies. While all components of turbulence kinetic energy showed minima in the regions where velocity was maximum (i.e. low fluid shear), they reached their maximum in the shear layer at the upper boundary of the flow.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号