首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   3篇
化学   129篇
力学   5篇
数学   5篇
物理学   27篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   7篇
  2011年   11篇
  2010年   7篇
  2009年   5篇
  2008年   16篇
  2007年   4篇
  2006年   11篇
  2005年   16篇
  2004年   8篇
  2003年   11篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1991年   2篇
  1988年   1篇
  1977年   2篇
  1976年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
1.
Quantum mechanical and quantum mechanical/molecular mechanical calculations in conjunction with continuum solvation models have been used to analyze CH-pi interactions in model systems of aryl- and alkyl-aromatic interactions, as well as in a model folding system designed to study those interactions. High level calculations reproduced accurately the interaction of CH-pi interactions in both alkyl- and aryl-based model systems. Dispersion effects dominate the interaction, but the electrostatics term is also relevant for aryl CH-pi interactions. Theoretical calculations were also used to examine the influence of CH-pi interactions in determining the conformational flexibility of folding models. Finally, a critical comparison of the results obtained from high level calculations on model systems and the experimental data derived for folding models in apolar solvents was carried out, which allowed us to reconcile the apparent discrepancy found between both data.  相似文献   
2.
The tautomeric preferences of the conjugated acids of 2-aminopyrrole derivatives have been examined both in the gas phase and in aqueous solution by using a combination of quantum mechanical, self-consistent reaction field and Monte Carlo–free-energy perturbation methods. The results show that the nature of substituents, the solvent and the presence of cosolute are relevant factors in modulating the relative stability between the tautomeric conjugate acids protonated at the heterocyclic ring and at the exocyclic amino nitrogen. Thus, attachment of electron-withdrawing groups to the ring, solvation in polar solvents, and the presence of negatively charged cosolutes tend to favor protonation at the exocyclic amino nitrogen. Nevertheless, none of these factors alone suffice to change the tautomeric preference for the ring-protonated forms. The results point out that the concerted occurrence of the three factors is necessary to shift the tautomeric preference towards the conjugated species protonated at the exocyclic nitrogen.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   
3.
The structural, dynamical, and recognition properties of antiparallel DNA triplexes formed by the antiparallel d(G#G.C), d(A#A.T), and d(T#A.T) motifs (the pound sign and dot mean reverse-Hoogsteen and Watson-Crick hydrogen bonds, respectively) are studied by means of "state of the art" molecular dynamics simulations. Once the characteristics of the helix are defined, molecular dynamics and thermodynamic integration calculations are used to determine the expected stabilization of the antiparallel triplex caused by the introduction of 8-aminopurines. Finally, oligonucleotides containing 8-aminopurine derivatives are synthesized and tested experimentally using several approaches in a variety of systems. A very large stabilization of the triplex is found experimentally, as predicted by simulations. These results open the possibility for the use of oligonucleotides carrying 8-aminopurines to bind single-stranded nucleic acids by formation of antiparallel triplexes.  相似文献   
4.
The tautomeric properties of isoguanine (also named 2-oxoadenine or 2-hydroxyadenine) have been studied in the gas phase, in different pure solvents, and in the DNA environment using state of the art theoretical methods. Our results show that isoguanine constitutes an unique example of how tautomerism can be modulated by the environment. Compared to the tautomeric preference in the gas phase, both polar solvents and the DNA microenvironment dramatically change the intrinsic tautomeric properties of isoguanine. Tautomers which are important in physiological conditions are less than 1/10(5) of the total population of isoguanine in the gas phase. The impact of the present findings in the understanding of spontaneous mutations and in the design of new nucleobases with multiple recognition properties is discussed.  相似文献   
5.
6.
The tautomerism of 2-azaadenine and 2-hypoxanthine has been examined in the gas phase and in aqueous solution. The tautomerism in the gas phase has been studied by means of semiempirical and ab initio quantum-mechanical computations, as well as density-functional calculations. The influence of the aqueous solvent on the relative stability between tautomers has been estimated from self-consistent reaction field calculations performed with different high-level continuum models. The results provide a detailed picture of the tautomeric preference for these purine bases. The importance of tautomerism in the substrate recognition by xanthine oxidase is discussed. Finally, the rate of oxidation of 2-azaadenine and 2- hypoxanthine by xanthine oxidase is discussed in terms of the recognition model at the enzyme active site.  相似文献   
7.
Summary The use of a recently proposed hydrophobic similarity index for the alignment of molecules and the prediction of their differences in biological activity is described. The hydrophobic similarity index exploits atomic contributions to the octanol/water transfer free energy, which are evaluated by means of the fractional partitioning scheme developed within the framework of the Miertus-Scrocco-Tomasi continuum model. Those contributions are used to define global and local measures of hydrophobic similarity. The suitability of this computational strategy is examined for two series of compounds (ACAT inhibitors and 5-HT3 receptor agonists), which are aligned to maximize the global hydrophobic similarity using a Monte Carlo-simulated protocol. Indeed, the concept of local hydrophobic similarity is used to explore structure–activity relationships in a series of COX-2 inhibitors. Inspection of the 3D distribution of hydrophobic/hydrophilic contributions in the aligned molecules is valuable to identify regions of very similar hydrophobicity, which can define pharmacophoric recognition patterns. Moreover, low similar regions permit to identify structural elements that modulate the differences in activity between molecules. Finally, the quantitative relationships found between the pharmacological activity and the hydrophobic similarity index points out that not only the global hydrophobicity, but its 3D distribution, is important to gain insight into the activity of molecules. J.M.M. and S.P. have contributed equally to this study.  相似文献   
8.
9.
This study examines the contribution of electrostatic and polarization to the interaction energy in a variety of molecular complexes. The results obtained from the Kitaura-Morokuma (KM) energy decomposition analysis at the HF/6-31G(d) level indicate that, for intermolecular distances around the equilibrium geometries, the polarization energy can be determined as the addition of the polarization energies of interacting blocks, as the mixed polarization term is typically negligible. Comparison of KM and QM/MM results shows that the electrostatic energy determined in the KM method is underestimated (in absolute value) by QM/MM methods. The reason of such underestimation can be attributed to the simplified representation of treating the interaction between overlapping charge distribution by the interaction of a QM molecule with a set of point charges. Nevertheless, the polarization energies calculated by KM and QM/MM methods are in close agreement. Finally, a consistent, automated strategy to derive charge distributions that include implicitly polarization effects in pairwise, additive force fields is presented. The strategy relies in the simultaneous fitting of electrostatic and polarization energies computed by placing a suitable perturbing particle at selected points around the molecule. The suitability of these charges to describe molecular interactions is discussed.  相似文献   
10.
Absolute free energies of hydration have been computed for 13 diverse organic molecules using partial charges derived from ab initio 6-31G* wave functions. Both Mulliken charges and charges fit to the electrostatic potential surface (EPS) were considered in conjunction with OPLS Lennard–Jones parameters for the organic molecules and the TIP4P model of water. Monte Carlo simulations with statistical perturbation theory yielded relative free energies of hydration. These were converted to absolute quantities through perturbations to reference molecules for which absolute free energies of hydration had been obtained previously in TIP4P water. The average errors in the computed absolute free energies of hydration are 1.1 kcal/mol for the 6-31G* EPS charges and 4.0 kcal/mol for the Mulliken charges. For the EPS charges, the largest individual errors are under 2 kcal/mol except for acetamide, in which case the error is 3.7 kcal/mol. The hydrogen bonding between the organic solutes and water has also been characterized. © John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号