首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
  国内免费   4篇
化学   67篇
物理学   4篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   1篇
  2009年   3篇
  2008年   7篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  1999年   2篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
1.
A novel fluorescent probe, which could be the first example of a ratiometric molecular probe for direct monitoring of NO production, has been developed using a 'spin-exchange' mechanism.  相似文献   
2.
An extremely simple, power-free pumping method for poly(dimethylsiloxane)(PDMS) microfluidic devices is presented. By exploiting the high gas solubility of PDMS, the energy for the pumping is pre-stored in the degassed bulk PDMS, therefore no additional structures other than channels and reservoirs are required. In a Y-shaped microchannel with cross section of 100 microm width x 25 microm height, this method has provided flow rate of 0.5-2 nL s(-1), corresponding to linear velocity of 0.2-0.8 mm s(-1), with good reproducibility. As an application of the power-free pumping, gold nanoparticle-based DNA analysis, which does not rely on the cross-linking mechanism between nanoparticles, has been implemented in a microchannel with three inlets. Target 15mer DNA has been easily and unambiguously discriminated from its single-base substituted mutant. Instead of colorimetric detection in a conventional microtube, an alternative detection technique suitable for microdevices has been discovered-observation of deposition on the PDMS surfaces. The channel layout enabled two simultaneous DNA analyses at the two interfaces between the three laminar streams.  相似文献   
3.
In this review, we present an overview of the technologies in colorimetric biosensors based on DNA-nanoparticle conjugates. Two types of DNA-nanoparticles aggregation assays are summarized. One of the methods relies on cross-linking of the gold nanoparticle (GNP) by hybridization. The crosslinking system was used not only to detect target DNA sequences, but also to detect metal ions or small molecules which were recognized by DNAzymes. The other method is the GNP non-crosslinking system. This approach shows high performance in the detection of single nucleotide polymorphisms. These methods do not need special equipment and open up a new possibility of point-of-care diagnoses.  相似文献   
4.
We have found that the photoluminescence (PL) intensity of CdSe/ZnS nanocrystals placed on a thin film of insulator (GaAsOx/GaAs) depends on excitation wavelength through the interference effects of the excitation light. By employing the multi-reflection/interference calculation, the insulator thickness of the underlying non-uniform patterns can be evaluated by the simple observation of CdSe/ZnS PL with a couple of excitation wavelengths. Moreover, the differences observed for the temporal evolution of CdSe/ZnS PL (blue shifts and degradation) among the excitation wavelengths suggest that the photo-induced changes of chemical composition and surface ligands are responsible for blue shifts and degradation, respectively.  相似文献   
5.
Novel fluorescent probes have been developed for the ultratrace detection of heavy metal ions by capillary electrophoresis using laser-induced fluorescence detection. Based on a molecular design, the probes are composed of an octadentate chelating moiety, a macrocyclic DOTA (tetraazacyclododecanetetraacetic acid) and an acyclic DTPA (diethylenetriaminepentaacetic acid) frame, a spacer and a fluorophore (fluorescein). These were chosen on the basis of their ability to form kinetically inert and highly emissive complexes, and to prevent a quenching effect even with heavy and paramagnetic metal ions. Addition of a cationic polymer, polybrene, in the separation buffer provided high resolution and simultaneous detection of Ca(2+), Mg(2+), Cu(2+), Zn(2+), Ni(2+), Co(2+), Mn(2+), Cd(2+) and Pb(2+). The direct fluorescence detection of these metal ions with high sensitivity at lower ppt levels, typically 2-7 × 10(-11) M (potentially sub-ppt), was successfully achieved. While separation of anionic compounds using a counter cation ("Ion Association (IA)" mode) is typically controlled by the ion association equilibrium constants, K(ass), it was found that differences in the mobilities, μ(ep(IAC)), of the ion association complexes formed between the probe complexes and counter cations are the driving forces for separation in this new method. This suggests that each of the polybrene-probe complexes has different chemical structures among metal ions, which were able to be determined by CD spectra in this investigation. This novel separation mode was termed the "Ion Association Complex (IAC)" mode, distinct from the IA mode.  相似文献   
6.
Ozasa K  Lee J  Song S  Hara M  Maeda M 《Lab on a chip》2011,11(11):1933-1940
We examined two-dimensional (2D) optical feedback control of phototaxis flagellate Euglena cells confined in closed-type microfluidic channels (microaquariums), and demonstrated that the 2D optical feedback enables the control of the density and position of Euglena cells in microaquariums externally, flexibly, and dynamically. Using three types of feedback algorithms, the density of Euglena cells in a specified area can be controlled arbitrarily and dynamically, and more than 70% of the cells can be concentrated into a specified area. Separation of photo-sensitive/insensitive Euglena cells was also demonstrated. Moreover, Euglena-based neuro-computing has been achieved, where 16 imaginary neurons were defined as Euglena-activity levels in 16 individual areas in microaquariums. The study proves that 2D optical feedback control of photoreactive flagellate microbes is promising for microbial biology studies as well as applications such as microbe-based particle transportation in microfluidic channels or separation of photo-sensitive/insensitive microbes.  相似文献   
7.
We developed a weak-affinity separation system for single-nucleotide polymorphisms (SNPs) based on capillary electrophoresis. In this approach, single-stranded DNA (ssDNA)-polyacrylamide (polyAAm) conjugate was used as a pseudo-immobilized affinity ligand to separate the target DNA, cytochrome P450 2C9 (CYP2C9), and its point mutant. The ligand DNA was designed to be complementary to the normal DNA, and the target DNA was electrophoretically separated by the difference in the affinity with the pseudo-immobilized ligand in the capillary. We showed that the separation efficiency was closely associated with the Tm value of double-stranded DNA (dsDNA) consisting of the target and ligand DNA, which depends on the measurement conditions, such as the base number of the ligand DNA and the concentration of Mg2+ in the buffer solution.  相似文献   
8.
This paper presents a simple fluid handling technique for microchip immunoassay. Necessary solutions were sequentially injected into a microchannel by air-evacuated poly(dimethylsiloxane), and were passively regulated by capillary force at the inlet opening. For heterogeneous immunoassay, microchips are potentially useful for reduction of sample consumption and assay time. However, most of the previously reported microchips have limitations in their use because of the needs for external power sources for fluid handling. In this paper, an on-chip heterogeneous immunofluorescence assay without such an external power source is demonstrated. The microchip consisting of poly(dimethylsiloxane) (PDMS) and glass has a simple structure, and therefore is suitable for single-use applications. Necessary solutions were sequentially injected into a microchannel in an autonomous fashion with the power-free pumping technique, which exploits the high solubility and the rapid diffusion of air in PDMS. For deionized water, this method yielded flow rates of 3-5 nL s-1 with reproducibility of 4-10%. The inlet opening of the microchannel functioned as a passive valve to hold the solution when the flow was finished. Rabbit immunoglobulin G (rIgG) and human C-reactive protein (CRP) were detected using the microchannel walls as reaction sites. With the sample consumption of 1 microL and the assay time of approximately 20 min including the antibody immobilization step, the sandwich immunoassay methods for rIgG and CRP exhibited the limits of detection of 0.21 nM (0.21 fmol) and 0.42 nM (0.42 fmol), respectively.  相似文献   
9.
10.
Capillary electrophoretic separation of 60 mer single-stranded DNA (ssDNA) and a single-base-substituted ssDNA was demonstrated using a size- and composition-controlled poly(ethylene glycol)-oligodeoxyribonucleotide block copolymer (PEG-b-ODN) as an affinity ligand. Under appropriate conditions, PEG-b-ODN and ssDNA with a complementary sequence formed a reversible complex via hybridization during the electrophoresis, while the copolymer did not interact with the single-base-substituted ssDNA. The copolymer's PEG length determined the electrophoretic mobility of the ssDNA; upon formation of the complex, the electrically neutral PEG added hydrodynamic friction to ssDNA. Simultaneously using two types of PEG-b-ODN copolymers whose PEG segments were of different lengths, we achieved the complete separation of the 60 mer ssDNA, its single-base-substituted ssDNA, and impurities. This method was sensitive enough to quantify a slight amount (approximately 1%) of the single-base-substituted ssDNA. The present results suggest that our approach is applicable to quantitative detection of minor genotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号