首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
  国内免费   4篇
化学   28篇
力学   5篇
数学   13篇
物理学   10篇
  2023年   4篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2004年   1篇
  2003年   2篇
  1998年   1篇
  1995年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
Foaming effect strongly impacts the physical and mechanical properties of foam glass materials, but an understanding of its mechanism especially at the molecular level is still limited. In this study, the foaming effects of dextrin, a mixture of dextrin and carbon, and different carbon allotropes are investigated with respect to surface morphology as well as physical and mechanical properties, in which 1 wt.% carbon black is identified as an optimal choice for a well-balanced material property. More importantly, the different foaming effects are elucidated by all-atomistic molecular dynamics simulations with molecular-level insights into the structure–property relationships. The results show that smaller pores and more uniform pore structure benefit the mechanical properties of the foam glass samples. The foam glass samples show excellent chemical and thermal stability with 1 wt.% carbon as the foaming agent. Furthermore, the foaming effects of CaSO4 and Na2HPO4 are investigated, which both create more uniform pore structures. This work may inspire more systematic approaches to control foaming effect for customized engineering needs by establishing molecular-level structure–property–process relationships, thereby, leading to efficient production of foam glass materials with desired foaming effects.  相似文献   
2.
The two-dimensional (2D) C3N has emerged as a material with promising applications in high performance device owing to its intrinsic bandgap and tunable electronic properties. Although there are several reports about the bandgap tuning of C3N via stacking or forming nanoribbon, bandgap modulation of bilayer C3N nanoribbons (C3NNRs) with various edge structures is still far from well understood. Here, based on extensive first-principles calculations, we demonstrated the effective bandgap engineering of C3N by cutting it into hydrogen passivated C3NNRs and stacking them into bilayer heterostructures. It was found that armchair (AC) C3NNRs with three types of edge structures are all semiconductors, while only zigzag (ZZ) C3NNRs with edges composed of both C and N atoms (ZZCN/ CN) are semiconductors. The bandgaps of all semiconducting C3NNRs are larger than that of C3N nanosheet. More interestingly, AC-C3NNRs with CN/CN edges (AC-CN/CN) possess direct bandgap while ZZ-CN/CN have indirect bandgap. Compared with the monolayer C3NNR, the bandgaps of bilayer C3NNRs can be greatly modulated via different stacking orders and edge structures, varying from 0.43 eV for ZZ-CN/CN with AB′-stacking to 0.04 eV for AC-CN/CN with AA-stacking. Particularly, transition from direct to indirect bandgap was observed in the bilayer AC-CN/CN heterostructure with AA′-stacking, and the indirect-to-direct transition was found in the bilayer ZZ-CN/CN with ABstacking. This work provides insights into the effective bandgap engineering of C3N and offers a new opportunity for its applications in nano-electronics and optoelectronic devices.  相似文献   
3.
This paper studies decoupled numerical methods for a mixed Stokes/Darcy model for coupling fluid and porous media flows. A two-level algorithm is proposed and analyzed in Mu and Xu (2007) [10]. We generalize the two-level algorithm to a multilevel algorithm in this paper and present numerical analysis on the error estimates for the multilevel algorithm. The multilevel algorithm solves the mixed Stokes/Darcy system by applying efficient legacy code for single model solvers to solve two decoupled Stokes and Darcy subproblems on all the subsequently refined meshes, except for a much smaller global problem only on a very coarse initial mesh. Numerical experiments are conducted for both the two-level and multilevel algorithms to illustrate their effectiveness and efficiency, and validate the related theoretical analysis.  相似文献   
4.
大气湍流效应是严重影响航空光电侦察系统图像质量的重要因素之一。从大气湍流参数描述出发,研究了大气湍流对光学系统成像质量的影响机理,分析了大气湍流影响光学系统调制传递函数(modulation transfer function,MTF)的影响因素,建立了大气湍流影响光学系统成像MTF的理论模型。仿真结果表明,在大气湍流影响下,光学系统光瞳口径与大气相干直径的比值对光学系统成像MTF影响较大。通过光学系统地面外场实验图像测试对比,验证了实际光学系统受到大气湍流影响后的成像MTF理论模型。研究结果可为大气湍流影响下的航空光电侦察系统设计及提升其成像质量提供理论支持。  相似文献   
5.
The interplay between the self-assembly and surface chemistry of 2,3,6,7,10,11-hexaaminotriphenylene (HATP) on Cu(111) was complementarily studied by high-resolution scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) under ultra-high vacuum conditions. To shed light on the competitive metal coordination, comparative experiments were carried out on pristine and nickel-covered Cu(111). Directly after room-temperature deposition of HATP onto pristine Cu(111), self-assembled aggregates were observed by STM, and XPS results indicated still protonated amino groups. Annealing up to 200 °C activated the progressive single deprotonation of all amino groups as indicated by chemical shifts of both the N 1s and C 1s core levels in the XP spectra. This enabled the formation of topologically diverse π–d conjugated coordination networks with intrinsic copper adatoms. The basic motif of these networks was a metal–organic trimer, in which three HATP molecules were coordinated by Cu3 clusters, as corroborated by the accompanying density functional theory (DFT) simulations. Additional deposition of more reactive nickel atoms resulted in both chemical and structural changes with deprotonation and formation of bis(diimino)–Ni bonded networks already at room temperature. Even though fused hexagonal metal-coordinated pores were observed, extended honeycomb networks remained elusive, as tentatively explained by the restricted reversibility of these metal–organic bonds.  相似文献   
6.
7.
Cai  Chenchen  Luo  Bin  Liu  Tao  Gao  Cong  Zhang  Wanglin  Chi  Mingchao  Meng  Xiangjiang  Nie  Shuangxi 《Cellulose (London, England)》2022,29(13):7139-7149

A variety of liquid energy exists in papermaking engineering and has not yet been developed and utilized. In addition, for the papermaking industry, the presence of slime can seriously affect the quality of the finished paper and can lead to paper breaking. The current slime control strategies cannot completely solve the problem and also have some low toxicity. In this study, a method of self-powered sterilization of cellulose fibers by using triboelectric pulsed direct current is reported. A liquid–solid triboelectric nanogenerator (L–S TENG) was used to convert the liquid energy of nanocellulose suspension into electrical energy and convert this electrical energy into pulsed direct current for self-powered sterilization of cellulose fiber. A hydrophobic coating material is used as solid triboelectric material and electrode for sterilization. Driven by L–S TENG, the electrodes exhibited an excellent sterilization rate against four microorganisms including Escherichia coli, Aspergillus niger, Candida albicans, and Klebsiella pneumoniae, which from slime in the papermaking industry. This study could provide a basic research theory for liquid energy harvesting in the papermaking industry, and also provide a new strategy for pulp sterilization.

Graphical abstract
  相似文献   
8.
纤维及织物因具有良好的柔性、透气性以及适宜的力学性能而成为人们日常生活必不可少的材料。随着柔性电子器件的快速发展,纤维及织物在其自身优势的基础上,开始被人们赋予智能化特征,使得智能纤维和织物逐渐在可穿戴领域占据一席之地。天然蚕丝具有产量大、机械性能优异和生物可降解的优势。近年来,面向智能应用的蚕丝基纤维与织物逐渐发展,被用于传感、致动、光学器件、能量收集和储能等领域。本文将首先介绍天然蚕丝的层级结构和性能,并介绍各种形貌结构的再生蚕丝材料;然后根据其在智能纤维及织物中应用领域的不同,详细阐述蚕丝基智能纤维及织物的制备方法、性能及工作机制;最后讨论进一步发展所面临的挑战与机会,并对未来前景进行展望。  相似文献   
9.
研究了电子帘加速器电子枪的束流传输特性,分析了影响束流纵向均匀性的几个因素,尤其对灯丝的下垂问题提出了一种理想的端约束模型.介绍了新研制的电子枪,其束流纵向不均匀度≤±10%.  相似文献   
10.
Authentication and secrecy codes which provide both secrecy and authentication have been intensively studied in the case where there is no splitting; however the results concerning the case where there is splitting are far fewer. In this paper, we focus on the case with c-splitting, and obtain a bound on the number of encoding rules required in order to obtain maximum levels of security. A c-splitting authentication and secrecy code is called optimal if it obtains maximum levels of security and has the minimum number of encoding rules. We define a new design, called an authentication perpendicular multi-array, and prove that the existence of authentication perpendicular multi-arrays implies the existence of optimal c-splitting authentication and secrecy codes. Further, we study the constructions and existence of authentication perpendicular multi-arrays, and then obtain two new infinite classes of optimal c-splitting authentication and secrecy codes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号