首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   3篇
化学   99篇
力学   1篇
数学   17篇
物理学   16篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   15篇
  2015年   7篇
  2014年   5篇
  2013年   13篇
  2012年   12篇
  2011年   11篇
  2010年   7篇
  2009年   5篇
  2008年   4篇
  2007年   8篇
  2004年   1篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1992年   1篇
  1987年   2篇
  1981年   2篇
  1980年   1篇
  1973年   1篇
排序方式: 共有133条查询结果,搜索用时 46 毫秒
1.
2.
Mesomorphic behavior of the novel long-chain alkyl polyglucoside emulsifier comprising arachidyl alcohol (C20), behenyl alcohol (C22), and arachidyl glucoside was investigated in order to determine the prevalent stabilization mechanism and moisturizing capacity of emulsion systems based on it. For this to be accomplished thermoanalytical methods (differential scanning calorimetry and thermogravimetric analysis) coupled with microscopy, rheological, X-ray diffraction methods and a short-term in vivo study of skin hydration level were performed. Obtained results have proved that C20/C22 alkyl polyglucoside mixed emulsifier is able to provide the synergism between the two main types of lamellar phases, the liquid-crystalline (Lα), and the gel crystalline (Lβ) one, building the emulsion systems of different stability and performance. Formation of lamellar structures influenced for more than one half of water within the system to be entrapped. Conducted investigation of hydration potential in real-time conditions provided valuable information on the investigated emulsion vehicles’ moisturizing potential as well as their contribution to the skin barrier improvement. Therefore, it could be expected that emulsions based on this alkyl polyglucoside emulsifier could influence the delivery of active ingredients of both the lipophilic and hydrophilic type. The employment of thermoanalytical methods in our work suggests the possibility for thermal methods to be used more frequently in the characterization of both the novel raw materials and the belonging emulsion systems.  相似文献   
3.
The purpose of this study was to test whether an empirical mathematical model (EMM) of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can distinguish between benign and malignant breast lesions. A modified clinical protocol was used to improve the sampling of contrast medium uptake and washout. T(1)-weighted DCE magnetic resonance images were acquired at 1.5 T for 22 patients before and after injection of Gd-DTPA. Contrast medium concentration as a function of time was calculated over a small region of interest containing the most rapidly enhancing pixels. Then the curves were fitted with the EMM, which accurately described contrast agent uptake and washout. Results demonstrate that benign lesions had uptake (P<2.0 x 10(-5)) and washout (P<.01) rates of contrast agent significantly slower than those of malignant lesions. In addition, secondary diagnostic parameters, such as time to peak of enhancement, enhancement slope at the peak and curvature at the peak of enhancement, were derived mathematically from the EMM and expressed in terms of primary parameters. These diagnostic parameters also effectively differentiated benign from malignant lesions (P<.03). Conventional analysis of contrast medium dynamics, using a subjective classification of contrast medium kinetics in lesions as "washout," "plateau" or "persistent" (sensitivity=83%, specificity=50% and diagnostic accuracy=72%), was less effective than the EMM (sensitivity=100%, specificity=83% and diagnostic accuracy=94%) for the separation of benign and malignant lesions. In summary, the present research suggests that the EMM is a promising alternative method for evaluating DCE-MRI data with improved diagnostic accuracy.  相似文献   
4.
The isothiocyanato Zn(II) complex (1) and mixed isothiocyanato/thiocyanato Cd(II) complex (2) with the condensation product of 2-acetylpyridine and trimethylammoniumacetohydrazide chloride (Girard’s T reagent) (HLCl) were investigated both experimentally and theoretically. The crystal structures of both complexes showed tridentate N2O coordination of hydrazine ligand. In complex 1 square-pyramidal coordination surrounding of Zn(II) consists of deprotonated hydrazone ligand and two isothiocyanato ligands, while in octahedral Cd(II) complex ligand is coordinated without deprotonation as a positively charged species and coordination geometry is completed with two N-coordinated and one S-coordinated NCS? anions. NMR spectroscopy and molar conductivity results for Cd(II) and Zn(II) complexes indicated their instability in solution. DFT calculations were performed to explain coordination preference and stability of complexes 1 and 2 in solid state and in solution. The obtained Cd(II) complex is the first reported mononuclear pseudohalide/halide Cd(II) complex with quinoline-/pyridine-based hydrazone ligands possessing octahedral geometry in solid state. In this complex, H-bonding has significant impact on coordination number and supramolecular assembly in solid state.  相似文献   
5.
We review several sufficient conditions for the positive definiteness of a tridiagonal matrix and propose a different approach to the problem, recalling and comprising little-known results on chain sequences.  相似文献   
6.
We study bulk and edge correlations in the compressible half-filled state, using a modified version of the plasma analogy. The corresponding plasma has anomalously weak screening properties, and as a consequence we find that the correlations along the edge do not decay algebraically as in the Laughlin (incompressible) case, while the bulk correlations decay in the same way. The results suggest that due to the strong coupling between charged modes on the edge and the neutral fermions in the bulk, reflected by the weak screening in the plasma analogue, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of electrons. We finally comment on a possible scenario, in which the Laughlin-like dynamical edge correlations may nevertheless be realized.  相似文献   
7.
8.
Among luminescence techniques, electrogenerated chemiluminescence (ECL) provides a unique level of manipulation of the luminescent process by controlling the electrochemical trigger. Despite its attractiveness, ECL is by essence a 2D process where light emission is strictly confined to the electrode surface. To overcome this intrinsic limitation, we added a new spatial dimension to the ECL process by generating 3D ECL at the level of millions of micro-emitters dispersed in solution. Each single object is addressed remotely by bipolar electrochemistry and they generate collectively the luminescence in the bulk. Therefore, the entire volume of the solution produces light. To illustrate the generality of this concept, we extended it to a suspension of multi-walled carbon nanotubes where each one acts as an individual ECL nano-emitter. This approach enables a change of paradigm by switching from a surface-limited process to 3D electrogenerated light emission.  相似文献   
9.
The osmotic coefficients of K2HPO4(aq) have been measured at T=298.15 K by the isopiestic vapor pressure method over the range of molalities from 1.3846 mol⋅kg−1 to 13.939 mol⋅kg−1 (oversaturation) with CaCl2(aq) as the reference solution. The molalities and osmotic coefficients of saturated solutions in equilibrium with K2HPO4xH2O(cr) were measured simultaneously by the same method. Available literature osmotic coefficients of K2HPO4(aq) at T=298.15 K, and our new experimental data, were combined and modeled using an extended form of Pitzer’s equation and the Clegg-Pitzer-Brimblecombe equation based on the mole-fraction-composition scale. These equations were used to calculate the activity coefficients of K2HPO4(aq) at T=298.15 K.  相似文献   
10.
The structure and dynamics of the adsorbate CO(2)/KCl(100) from a diluted phase to a saturated monolayer have been investigated with He atom scattering (HAS), low-energy electron diffraction (LEED), and polarization dependent infrared spectroscopy (PIRS). Two adsorbate phases with different CO(2) coverage have been found. The low-coverage phase is disordered at temperatures near 80 K and becomes at least partially ordered at lower temperatures, characterized by a (2√2×√2)R45° diffraction pattern. The saturated 2D phase has a high long-range order and exhibits (6√2×√2)R45° symmetry. Its isosteric heat of adsorption is 26 ± 4 kJ mol(-1). According to PIRS, the molecules are oriented nearly parallel to the surface, the average tilt angle in the saturated monolayer phase is 10° with respect to the surface plane. For both phases, structure models are proposed by means of potential calculations. For the saturated monolayer phase, a striped herringbone structure with 12 inequivalent molecules is deduced. The simulation of infrared spectra based on the proposed structures and the vibrational exciton approach gives reasonable agreement between experimental and simulated infrared spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号