首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
化学   7篇
力学   1篇
数学   1篇
物理学   11篇
  2016年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Airflow resistivity is a physical parameter which characterizes porous and fibrous sound absorbent materials. It is well-known that such property allows the evaluation of the acoustic behaviour of sound absorbent materials in various fields of application, including automotive noise mitigation, architectural acoustics and building acoustics. In structure-borne sound insulation, airflow resistivity is essential for the evaluation of the dynamic stiffness of porous and fibrous resilient insulating materials used as underlay in floating floors.However, an inconsistency between the dynamic stiffness and the airflow resistivity test conditions can be recognized. In order to evaluate dynamic stiffness of a resilient material, a static load of about 2 kPa is applied, while in airflow resistivity determination this condition is not explicitly required. As a result, the density of analyzed material, in dynamic stiffness and airflow measurements, is different. Since these two quantities are correlated, it is necessary to measure materials under the same conditions of applied static load.In this work the effects of static load (or density after compression) in airflow resistivity determination of various porous and fibrous resilient materials are investigated, and the consequent influence on dynamic stiffness is discussed. A simply empirical relation between density and airflow resistivity is also put forth.The main focus of this paper is to propose an harmonization among requirements of the Standards in order to prevent significant errors in dynamic stiffness determination and incorrect evaluations of the acoustic behaviour.  相似文献   
2.
Large-Eddy Simulation is performed for a single day from the Cooperative Atmosphere-Surface Exchange Study (CASES-99) field program. This study investigates an observed case of evening transition boundary layer over land. Parameters of the ambient atmosphere in the LES-decay studies conducted so far were typically prescribed in an idealized form. To provide suitable data under the wide range of the PBL weather conditions, the LES should be able to adequately reproduce the PBL turbulence dynamics including–if possible–baroclinicity, radiation, large scale advection and not only be related to a decreasing surface heating. In addition LES-decay studies usually assume that the sensible heat flux decreases instantaneously or with a very short time scale. The main purpose of this investigation is to study the decay of boundary-layer average turbulent kinetic energy at sunset with Large-Eddy Simulation that is forced with realistic environment conditions. This allows investigating the Turbulent Kinetic Energy decay over the realistic time scale that is observed in the atmosphere. During the intermediate and last stage of decay of the boundary-layer average Turbulent Kinetic Energy the exponents of the decay power law t−ntn go from 2 to 6, as evidenced by experimental results and recent analytical modeling in the surface layer.  相似文献   
3.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
4.
Electrospray mass spectrometry/mass spectrometry was used to investigate the gas‐phase properties of protonated expanded porphyrins, in order to correlate those with their structure and conformation. We have selected five expanded meso‐pentafluorophenyl porphyrins, respectively, a pair of oxidized/reduced fused pentaphyrins (22 and 24 π electrons), a pair of oxidized/reduced regular hexaphyrins (26 and 28 π electrons) and a regular doubly N‐fused hexaphyrin (28 π electrons). The gas‐phase behavior of the protonated species of oxidized and reduced expanded porphyrins is different. The oxidized species (aromatic Hückel systems) fragment more extensively, mainly by the loss of two HF molecules. The reduced species (Möbius aromatic or Möbius‐like aromatic systems) fragment less than their oxidized counterparts because of their increased flexibility. The protonated regular doubly fused hexaphyrin (non‐aromatic Hückel system) shows the least fragmentation even at higher collision energies. In general, cyclization through losses of HF molecules decreases from the aromatic Hückel systems to Möbius aromatic or Möbius‐like aromatic systems to non‐aromatic Hückel systems and is related to an increase in conformational distortion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Carotenoids are linear C40 tetraterpenoid hydrocarbons and represent a wide category of natural pigments. They are components of the pigment system of chloroplasts and are involved in the primary light absorption and the photon canalization of photosynthesis. Moreover, they also behave as quenchers of singlet oxygen, protecting cells and organisms against lipid peroxidation.Carotenoids have a strong lipophilic character and are usually analyzed in organic solvents. However, because of their biological activity, the characterization of these compounds in an aqueous environment or in the natural matrix is very important.One of the most important dietary carotenoids is beta-carotene, which has been extensively studied both in vivo and in model systems, but because of the low concentration and strong interaction with the biological matrix, beta-carotene has never been observed by NMR in solid aqueous samples.In the present work, a model system has been developed for the detection and identification of beta-carotene in solid aqueous samples by 1H HR-MAS NMR. The efficiency of the model has led to the identification of beta-carotene in a raw vegetable matrix.  相似文献   
7.
8.
Using a novel differential magneto-optical imaging technique we investigate the phenomenon of vortex lattice melting in crystals of Bi2Sr2CaCu2O8 (BSCCO). The images of melting reveal complex patterns in the formation and evolution of the vortex solid-liquid interface with varying field (H)/temperature (T). We believe that the complex melting patterns are due to a random distribution of material disorder/inhomogeneities across the sample, which create fluctuations in the local melting temperature or field value. To study the fluctuations in the local melting temperature/field, we have constructed maps of the melting landscape T m(H, r), viz., the melting temperature (T m) at a given location (r) in the sample at a given field (H). A study of these melting landscapes reveals an unexpected feature: the melting landscape is not fixed, but changes rather dramatically with varying field and temperature along the melting line. It is concluded that the changes in both the scale and shape of the landscape result from the competing contributions of different types of quenched disorder which have opposite effects on the local melting transition.  相似文献   
9.
This is a continuation of our earlier investigation (Gurtuet al 1974Phys. Lett. 50 B 391) on multiparticle production in proton-nucleus collisions based on an exposure of emulsion stack to 200 GeV/c beam at the NAL. It is found that the ratioR em = 〈n s〉/〈n ch〉, where 〈n ch〉 is the charged particle multiplicity in pp-collisions, increases slowly from about 1 at 10 GeV/c to 1·6 at 68 GeV/c and attains a constant value of 1·71 ± 0·04 in the region 200 to 8000 GeV/c. Furthermore,R em = 1·71 implies an effectiveA-dependence ofR A =A 0.18,i.e., a very weak dependence. Predictions ofR em on various models are discussed and compared with the emulsion data. Data seem to favour models of hadron-nucleon collisions in which production of particles takes place through adouble step mechanism,e.g., diffractive excitation, hydrodynamical and energy flux cascade as opposed to models which envisage instantaneous production.  相似文献   
10.

Background

Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System) neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior.

Results

We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle.

Conclusion

Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal transport holds great promise. The data shown here provide a basic framework for the intraneural pharmacology of this tripartite complex. The pharmacologically efficacious drug delivery demonstrated here verify the fundamental feasibility of using axonal transport for targeted drug delivery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号